1
|
Smith MA, Chiacchia S, Boehme J, Datar SA, Morell E, Keller RL, Romer A, Colglazier E, Parker C, Becerra J, Fineman JR. MicroRNA in pediatric pulmonary hypertension microRNA profiling to inform disease classification, severity, and treatment response in pediatric pulmonary hypertension. Am J Physiol Heart Circ Physiol 2025; 328:H47-H57. [PMID: 39589759 DOI: 10.1152/ajpheart.00622.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Pediatric pulmonary hypertension is a heterogeneous disease associated with significant morbidity and mortality. MicroRNAs have been implicated as both pathologic drivers of disease and potential therapeutic targets in pediatric pulmonary hypertension. We sought to characterize the circulating microRNA profiles of a diverse array of pediatric patients with pulmonary hypertension using high-throughput sequencing technology. Peripheral blood samples were drawn from patients recruited at the time of a clinically indicated cardiac catheterization, and microRNA sequencing followed by differential expression and target/pathway enrichment analyses were performed. Among 63 pediatric patients with pulmonary hypertension, we identified specific microRNA signatures that uniquely classified patients by disease subtype, correlated with indicators of disease severity including invasive hemodynamic metrics, and changed over the course of treatment for pulmonary hypertension. These microRNA profiles include a number of specific microRNA molecules known to function in signaling pathways critical to pulmonary vascular biology and disease, including transforming growth factor-β (TGF-β), VEGF, PI3K/Akt, cGMP-PKG, and HIF-1 signaling. Circulating levels of miR-122-5p, miR-124-3p, miR-204-5p, and miR-9-5p decreased over the course of treatment in a subset of patients who had multiple samples drawn during the study period. Our findings support the further investigation of specific microRNAs as mechanistic mediators, biomarkers, and therapeutic targets in pulmonary hypertension.NEW & NOTEWORTHY We present novel insight into the circulating microRNA profiles of pediatric patients with pulmonary hypertension. Our findings support the utility of microRNAs as both useful biomarkers of disease severity and potential therapeutic targets in pediatric pulmonary hypertension.
Collapse
Affiliation(s)
- Michael A Smith
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Sam Chiacchia
- Department of Emergency Medicine, Stanford University, Palo Alto, California, United States
| | - Jason Boehme
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Sanjeev A Datar
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Emily Morell
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Roberta L Keller
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Amy Romer
- Division of Pediatric Critical Care, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Elizabeth Colglazier
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Claire Parker
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Jasmine Becerra
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Jeffrey R Fineman
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| |
Collapse
|
2
|
Li WW, Guo ZM, Wang BC, Liu QQ, Zhao WA, Wei XL. PCSK9 induces endothelial cell autophagy by regulating the PI3K/ATK pathway in atherosclerotic coronary heart disease. Clin Hemorheol Microcirc 2025; 89:55-67. [PMID: 38728182 DOI: 10.3233/ch-242172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory disease of the arteries, and its pathogenesis is related to endothelial dysfunction. It has been found that the protein convertase subtilin/kexin9 type (PCSK9) plays an important role in AS, but its specific mechanism is still unclear. METHODS In this study, we first cultured human umbilical vein endothelial cells (HUVECs) with 50 or 100μg/ml oxidized low-density lipoprotein (ox-LDL) for 24 hours to establish a coronary atherosclerosis cell model. RESULTS The results showed that ox-LDL induced HUVEC injury and autophagy and upregulated PCSK9 protein expression in HUVECs in a concentration-dependent manner. Silencing PCSK9 expression with siRNA inhibited ox-LDL-induced HUVEC endothelial dysfunction, inhibited the release of inflammatory factors, promoted HUVEC proliferation and inhibited apoptosis. In addition, ox-LDL increased the expression of LC3B-I and LC3B-II and decreased the expression of p62. However, these processes are reversed by sh-PCSK9. In addition, sh-PCSK9 can inhibit PI3K, AKT and mTOR phosphorylation and promote autophagy. CONCLUSION Taken together, our research shows that silencing PCSK9 inhibits the PI3K/ATK/mTOR pathway to activate ox-LDL-induced autophagy in vascular endothelial cells, alleviating endothelial cell injury and inflammation.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ze-Ming Guo
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Bing-Cai Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qing-Quan Liu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wen-An Zhao
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiao-Lan Wei
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Chen F, Yu X. Circ_0002331 Interacts with ELAVL1 to Improve ox-LDL-Induced Vascular Endothelial Cell Dysfunction via Regulating CCND2 mRNA Stability. Cardiovasc Toxicol 2024; 24:625-636. [PMID: 38743320 DOI: 10.1007/s12012-024-09865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Circular RNAs (circRNAs) have been discovered to serve as vital regulators in atherosclerosis (AS). However, the role and mechanism of circ_0002331 in AS process are still unclear. Human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL to establish an in vitro model for AS. The expression levels of circ_0002331, Cyclin D2 (CCND2) and ELAVL1 were analyzed by quantitative real-time PCR. Cell proliferation, apoptosis, migration, invasion and angiogenesis were assessed by EdU assay, flow cytometry, transwell assay and tube formation assay. The protein levels of CCND2, ELAVL1, and autophagy-related markers were detected using western blot analysis. IL-8 level was analyzed by ELISA. The relationship between ELAVL1 and circ_0002331 or CCND2 was analyzed by RIP assay and RNA pull-down assay. Moreover, FISH assay was used to analyze the co-localization of ELAVL1 and CCND2 in HUVECs. Our data showed that circ_0002331 was obviously downregulated in AS patients and ox-LDL-induced HUVECs. Overexpression of circ_0002331 could promote proliferation, migration, invasion and angiogenesis, while inhibit apoptosis, autophagy and inflammation in ox-LDL-induced HUVECs. Furthermore, CCND2 was positively regulated by circ_0002331, and circ_0002331 could bind with ELAVL1 to promote CCND2 mRNA stability. Besides, CCND2 overexpression suppressed ox-LDL-induced HUVECs dysfunction, and its knockdown also reversed the regulation of circ_0002331 on ox-LDL-induced HUVECs dysfunction. In conclusion, circ_0002331 might be a potential target for AS treatment, which could improve ox-LDL-induced dysfunction of HUVECs via regulating CCND2 by binding with ELAVL1.
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiovascular Medicine, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Xiufeng Yu
- Department of Emergency Medicine, Lishui People's Hospital, No. 1188 Liyang Street, Yanquan Avenue, Liandu District, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
4
|
Mahesutihan M, Yan J, Midilibieke H, Yu L, Dawulin R, Yang WX, Wulasihan M. Role of cyclophilin A in aggravation of myocardial ischemia reperfusion injury via regulation of apoptosis mediated by thioredoxin-interacting protein. Clin Hemorheol Microcirc 2024; 87:491-513. [PMID: 38669522 DOI: 10.3233/ch-242142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND The progression and persistence of myocardial ischemia/reperfusion injury (MI/RI) are strongly linked to local inflammatory responses and oxidative stress. Cyclophilin A (CypA), a pro-inflammatory factor, is involved in various cardiovascular diseases. However, the role and mechanism of action of CypA in MI/RI are still not fully understood. METHODS We used the Gene Expression Omnibus (GEO) database for bioinformatic analysis. We collected blood samples from patients and controls for detecting the levels of serum CypA using enzyme-linked immunosorbent assay (ELISA) kits. We then developed a myocardial ischemia/reperfusion (I/R) injury model in wild-type (WT) mice and Ppia-/- mice. We utilized echocardiography, hemodynamic measurements, hematoxylin and eosin (H&E) staining, immunohistochemistry, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine the role of CypA in myocardial I/R injury. Finally, we conducted an in vitrostudy, cell transfection, flow cytometry, RNA interference, and a co-immunoprecipitation assay to clarify the mechanism of CypA in aggravating cardiomyocyte apoptosis. RESULTS We found that CypA inhibited TXNIP degradation to enhance oxidative stress-induced cardiomyocyte apoptosis during MI/RI. By comparing and analyzing CypA expression in patients with coronary atherosclerotic heart disease and in healthy controls, we found that CypA was upregulated in patients with Coronary Atmospheric Heart Disease, and its expression was positively correlated with Gensini scores. In addition, CypA deficiency decreased cytokine expression, oxidative stress, and cardiomyocyte apoptosis in I/R-treated mice, eventually alleviating cardiac dysfunction. CypA knockdown also reduced H2O2-induced apoptosis in H9c2 cells. Mechanistically, we found that CypA inhibited K48-linked ubiquitination mediated by atrophin-interacting protein 4 (AIP4) and proteasomal degradation of TXNIP, a thioredoxin-binding protein that mediates oxidative stress and induces apoptosis. CONCLUSION These findings highlight the critical role CypA plays in myocardial injury caused by oxidative stress-induced apoptosis, indicating that CypA can be a viable biomarker and a therapeutic target candidate for MI/RI.
Collapse
Affiliation(s)
- Madina Mahesutihan
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ju Yan
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hasidaer Midilibieke
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Reyizha Dawulin
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wen-Xian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Muhuyati Wulasihan
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Men X, Hu A, Xu T. CircLZIC regulates ox-LDL-induced HUVEC cell proliferation and apoptosis via Micro-330-5p/NOTCH2 axis in atherosclerosis. Clin Hemorheol Microcirc 2024; 87:115-127. [PMID: 38277288 PMCID: PMC11191521 DOI: 10.3233/ch-232063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Atherosclerosis (AS) is a major chronic non-communicable disease and a primary cause of cardiovascular disease. Recent studies have shown that circRNAs are potential epigenetic factors that regulate vascular endothelial inflammatory responses and AS progression. Therefore, identification of the circRNAs that regulate ox-LDL levels is a critical step to understanding the pathology of AS. Our study is aim to investigate how circLZIC regulates atherosclerosis (AS) via the Micro-330-5p/NOTCH2 regulatory axis. The results showed that CircLZIC and NOTCH2 are highly expressed in human AS clinical samples, while Micro-330-5p is expressed locally. The CCK-8 experiment results showed that circLZIC promotes the proliferation of HUVECS cells. Flow cytometry analysis showed that circLZIC act as an inhibitor of HUVEC cell apoptosis. The expression level of Micro-330-5p can be up-regulated by transfection of small interfering RNA against circLZIC. Further, Starbase predicted that Micro-330-5p could target and regulate NOTCH2. Next, we confirmed that overexpression of Micro-330-5p could significantly reduce the expression of fluorescein using the double Luciferase reporter assay. RIP-qRT-PCR experiment showed that Micro-330-5p and NOTCH2 mRNAs are effectively enriched by ago2 protein. Further, we found that knocking down circLZIC increases the expression of Micro-330-5p and promotes cell apoptosis, while inhibiting the expression of NOTCH2 and cell activity. On the other hand, co-transfection of Micro-330-5p inhibitor decreases Micro-330-5p expression and inhibit cell apoptosis, while increasing NOTCH2 expression and cell activity. In conclusion, CircLZIC regulates HUVEC cell activity by the Micro-330-5p/NOTCH2 signaling pathway, suggesting that circLZIC plays a key role in atherosclerosis development.
Collapse
Affiliation(s)
- Xingping Men
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Aizhen Hu
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Tingting Xu
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
6
|
Li S, Wang Y. Regulatory mechanism of DDX5 in ox-LDL-induced endothelial cell injury through the miR-640/SOX6 axis. Clin Hemorheol Microcirc 2024; 88:157-170. [PMID: 39093065 DOI: 10.3233/ch-242254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND Endothelial dysfunction is an early and pre-clinical manifestation of coronary heart disease (CHD). OBJECTIVE This study investigates the role of DDX5 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury to confer novel targets for the treatment of CHD. METHODS Endothelial cells were induced by ox-LDL. DDX5, pri-miR-640, pre-miR-640, miR-640, and SOX6 expressions were analyzed by RT-qPCR and Western blot. DDX5 expression was intervened by shRNA, followed by CCK-8 analysis of proliferation, flow cytometry detection of apoptosis, and tube formation assay analysis of angiogenic potential of cells. The binding between DDX5 and pri-miR-640 was determined by RIP, and the pri-miR-640 RNA stability was measured after actinomycin D treatment. Dual-luciferase assay verified the targeting relationship between miR-640 and SOX6. RESULTS DDX5 and miR-640 were highly expressed while SOX6 was poorly expressed in ox-LDL-induced endothelial cells. Silence of DDX5 augmented cell proliferation, abated apoptosis, and facilitated angiogenesis. Mechanistically, RNA binding protein DDX5 elevated miR-640 expression by weakening the degradation of pri-miR-640, thereby reducing SOX6 expression. Combined experimental results indicated that overexpression of miR-640 or low expression of SOX6 offset the protective effect of DDX5 silencing on cell injury. CONCLUSION DDX5 elevates miR-640 expression by repressing the degradation of pri-miR-640 and then reduces SOX6 expression, thus exacerbating ox-LDL-induced endothelial cell injury.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, Heilongjiang, China
| | - Yu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Zeng R, Wang Y, Chen J, Liu Q. Furin knockdown inhibited EndMT and abnormal proliferation and migration of endothelial cells. Clin Hemorheol Microcirc 2024; 88:59-70. [PMID: 38820014 DOI: 10.3233/ch-242171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND In the pathogenesis of atherosclerotic cardiovascular disorders, vascular endothelium is crucial. A critical step in the development of atherosclerosis is endothelial dysfunction. Furin may play a factor in vascular remodeling, inflammatory cell infiltration, regulation of plaque stability, and atherosclerosis by affecting the adhesion and migration of endothelial cells. It is yet unknown, though, how furin contributes to endothelial dysfunction. METHODS We stimulated endothelial cells with oxidized modified lipoprotein (ox-LDL). Endothelial-to-mesenchymal transition (EndMT) was found using immunofluorescence (IF) and western blot (WB). Furin expression level and Hippo/YAP signal activation were found using reverse transcription-quantitative PCR (RT-qPCR) and WB, respectively. To achieve the goal of furin knockdown, we transfected siRNA using the RNA transmate reagent. Following furin knockdown, cell proliferation, and migration were assessed by the CCK-8, scratch assay, and transwell gold assay, respectively. WB and IF both picked up on EndMT. WB and RT-qPCR, respectively, were used to find furin's expression level. We chose the important micrornas that can regulate furin and we then confirmed them using RT-qPCR. RESULTS EndMT was created by ox-LDL, evidenced by the up-regulation of mesenchymal cell markers and the down-regulation of endothelial cell markers. Furin expression levels in both protein and mRNA were increased, and the Hippo/YAP signaling pathway was turned on. Furin knockdown dramatically reduced the aberrant migration and proliferation of endothelial cells by ox-LDL stimulation. Furin knockdown can also suppress ox-LDL-induced EndMT, up-regulate indicators of endothelial cells, and down-regulate markers of mesenchymal cells. After ox-LDL stimulation and siRNA transfection, furin's expression level was up-regulated and down-regulated. CONCLUSION Our study demonstrated that furin knockdown could affect ox-LDL-induced abnormal endothelial cell proliferation, migration, and EndMT. This implies that furin plays an important role in endothelial dysfunction.
Collapse
Affiliation(s)
- Rui Zeng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yimin Wang
- Rehabilitation Area of the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun Chen
- Rehabilitation Area of the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiang Liu
- Rehabilitation Area of the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Dergunova LV, Vinogradina MA, Filippenkov IB, Limborska SA, Dergunov AD. Circular RNAs Variously Participate in Coronary Atherogenesis. Curr Issues Mol Biol 2023; 45:6682-6700. [PMID: 37623241 PMCID: PMC10453518 DOI: 10.3390/cimb45080422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, numerous studies have shown that circular RNAs (circRNAs) play a significant role in coronary artery atherogenesis and other cardiovascular diseases. They belong to the class of non-coding RNAs and arise as a result of non-canonical splicing of premature RNA, which results in the formation of closed single-stranded circRNA molecules that lack 5'-end caps and 3'-end poly(A) tails. circRNAs have broad post-transcriptional regulatory activity. Acting as a sponge for miRNAs, circRNAs compete with mRNAs for binding to miRNAs, acting as competing endogenous RNAs. Numerous circRNAs are involved in the circRNA-miRNA-mRNA regulatory axes associated with the pathogenesis of cardiomyopathy, chronic heart failure, hypertension, atherosclerosis, and coronary artery disease. Recent studies have shown that сirc_0001445, circ_0000345, circ_0093887, сircSmoc1-2, and circ_0003423 are involved in the pathogenesis of coronary artery disease (CAD) with an atheroprotective effect, while circ_0002984, circ_0029589, circ_0124644, circ_0091822, and circ_0050486 possess a proatherogenic effect. With their high resistance to endonucleases, circRNAs are promising diagnostic biomarkers and therapeutic targets. This review aims to provide updated information on the involvement of atherogenesis-related circRNAs in the pathogenesis of CAD. We also discuss the main modern approaches to detecting and studying circRNA-miRNA-mRNA interactions, as well as the prospects for using circRNAs as biomarkers and therapeutic targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Liudmila V. Dergunova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Margarita A. Vinogradina
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Ivan B. Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky Street 10, Moscow 101990, Russia;
| |
Collapse
|