Alshanqiti FM, Al-Masaudi SB, Al-Hejin AM, El-Baky NA, Redwan EM. Development of nanoparticle adjuvants to potentiate the immune response against diphtheria toxoid.
Hum Antibodies 2018;
26:75-85. [PMID:
29171990 DOI:
10.3233/hab-170324]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND
Over the years, diphtheria was known as contagious fatal infection caused by Corynebacterium diphtheria that affects upper respiratory system. The spread of diphtheria epidemic disease is best prevented by vaccination with diphtheria toxoid vaccine. Aluminum adjuvants were reported to stimulate the immune responses to killed and subunit vaccines.
OBJECTIVE
Our study aimed to minimize adjuvant particles size, to gain insight of resulting immunity titer and impact on immune response antibody subtypes.
METHODS
Aluminum salts and calcium phosphate adjuvants were prepared, followed by micro/nanoparticle adjuvants preparation. After formulation of diphtheria vaccine from diphtheria toxoid and developed adjuvants, we evaluated efficacy of these prepared vaccines based on their impact on immune response via measuring antibodies titer, antibodies isotyping and cytokines profile in immunized mice.
RESULTS
A noteworthy increase in immunological parameters was observed; antibodies titer was higher in serum of mice injected with nanoparticle adjuvants-containing vaccine than mice injected with standard adjuvant-containing vaccine and commercial vaccine. Aluminum compounds adjuvants (nanoparticles and microparticles formulation) and microparticles calcium phosphate adjuvant induce TH2 response, while nanoparticles calcium phosphate and microparticles aluminum compounds adjuvants stimulate TH1 response.
CONCLUSIONS
Different treatments to our adjuvant preparations (nanoparticles and microparticles formulation) had a considerable impact on vaccine immunogenicity.
Collapse