1
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
2
|
Recombinant antibodies by phage display for bioanalytical applications. Biosens Bioelectron 2023; 222:114909. [PMID: 36462427 DOI: 10.1016/j.bios.2022.114909] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Antibody phage display, aimed at preparing antibodies to defined antigens, is a useful replacement for hybridoma technology. The phage system replaces all work stages that follow animal immunization with simple procedures for manipulating DNA and bacteria. It enables the time needed to generate stable antibody-producing clones to be shortened considerably, making the process noticeably cheaper. Antibodies prepared by phage display undergo several affinity selection steps and can be used as selective receptors in biosensors. This article briefly describes the techniques used in the making of phage antibodies to various antigens. The possibilities and prospects are discussed of using phage antibodies as selective agents in analytical systems, including biosensors.
Collapse
|
3
|
Guliy OI, Evstigneeva SS, Dykman LA. The Use of Phage Antibodies for Microbial Cell Detection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
4
|
Monoclonal Antibodies for Bacterial Pathogens: Mechanisms of Action and Engineering Approaches for Enhanced Effector Functions. Biomedicines 2022; 10:biomedicines10092126. [PMID: 36140226 PMCID: PMC9496014 DOI: 10.3390/biomedicines10092126] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibody (mAb) therapy has opened a new era in the pharmaceutical field, finding application in various areas of research, from cancer to infectious diseases. The IgG isoform is the most used therapeutic, given its long half-life, high serum abundance, and most importantly, the presence of the Fc domain, which can be easily engineered. In the infectious diseases field, there has been a rising interest in mAbs research to counteract the emerging crisis of antibiotic resistance in bacteria. Various pathogens are acquiring resistance mechanisms, inhibiting any chance of success of antibiotics, and thus may become critically untreatable in the near future. Therefore, mAbs represent a new treatment option which may complement or even replace antibiotics. However, very few antibacterial mAbs have succeeded clinical trials, and until now, only three mAbs have been approved by the FDA. These failures highlight the need of improving the efficacy of mAb therapeutic activity, which can also be achieved with Fc engineering. In the first part of this review, we will describe the mechanisms of action of mAbs against bacteria, while in the second part, we will discuss the recent advances in antibody engineering to increase efficacy of pre-existing anti-bacterial mAbs.
Collapse
|
5
|
Investigation of Conditions for Capture of Live Legionella pneumophila with Polyclonal and Recombinant Antibodies. BIOSENSORS 2022; 12:bios12060380. [PMID: 35735528 PMCID: PMC9221320 DOI: 10.3390/bios12060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Since Legionella pneumophila has caused punctual epidemics through various water systems, the need for a biosensor for fast and accurate detection of pathogenic bacteria in industrial and environmental water has increased. In this report, we evaluated conditions for the capture of live L. pneumophila on a surface by polyclonal antibodies (pAb) and recombinant antibodies (recAb) targeting the bacterial lipopolysaccharide. Using immunoassay and PCR quantification, we demonstrated that, when exposed to live L. pneumophila in PBS or in a mixture containing other non-target bacteria, recAb captured one third fewer L. pneumophila than pAb, but with a 40% lower standard deviation, even when using the same batch of pAb. The presence of other bacteria did not interfere with capture nor increase background by either Ab. Increased reproducibility, as manifested by low standard deviation, is a characteristic that is coveted for biosensing. Hence, the recAb provided a better choice for immune adhesion in biosensors even though it was slightly less sensitive than pAb. Polyclonal or recombinant antibodies can specifically capture large targets such as whole bacteria, and this opens the door to multiple biosensor approaches where any of the components of the bacteria can then be measured for detection or characterisation.
Collapse
|
6
|
Sulong P, Anudit N, Nuanualsuwan S, Mariela S, Khantasup K. Application of phage display technology for the production of antibodies against Streptococcus suis serotype 2. PLoS One 2021; 16:e0258931. [PMID: 34699547 PMCID: PMC8547629 DOI: 10.1371/journal.pone.0258931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis (S. suis) serotype 2 infection is a problem in the swine industry and responsible for most cases of human infection worldwide. Since current multiplex PCR cannot differentiate between serotypes 2 and 1/2, then serotype-specific antibodies (Abs) are required for serotype identification to confirm infection by serotype 2. This study aimed to generate Abs specific to S. suis serotype 2 by phage display from a human heavy chain variable domain (VH) antibody library. For biopanning, whole cells of S. suis serotype 2 were used as the target antigen. With increasing selection stringency, we could select the VH Abs that specifically bound to a S. suis serotype 2 surface antigen, which was identified as the capsular polysaccharide (CPS). From ELISA analysis, the specific phage clone 47B3 VH with the highest binding activity to S. suis serotype 2 was selected and shown to have no cross-reactivity with S. suis serotypes 1/2, 1, and 14 that shared a common epitope with serotype 2 and occasionally cause infections in human. Moreover, no cross-reactivity with other bacteria that can be found in septic blood specimens was also observed. Then, 47B3 VH was successfully expressed as soluble 47B3 VH in E. coli TG1. The soluble 47B3 VH crude extract was further tested for its binding ability in a dose-dependent ELISA assay. The results indicated that the activity of phage clone 47B3 was still retained even when the Ab occurred in the soluble form. A quellung reaction demonstrated that the soluble 47B3 VH Ab could show bioactivity by differentiation between S. suis serotypes 2 and 1/2. Thus, it will be beneficial to use this VH Ab in the diagnosis of disease or discrimination of S. suis serotypes Furthermore, the results described here could motivate the use of phage display VH platform to produce serotyping antibodies.
Collapse
Affiliation(s)
- Pattarawadee Sulong
- The Medical Microbiology Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Natsinee Anudit
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
| | - Segura Mariela
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Kannika Khantasup
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
8
|
Pyruvate dehydrogenase complex-enzyme 2, a new target for Listeria spp. detection identified using combined phage display technologies. Sci Rep 2020; 10:15267. [PMID: 32943681 PMCID: PMC7498459 DOI: 10.1038/s41598-020-72159-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Listeria comprises ubiquitous bacteria, commonly present in foods and food production facilities. In this study, three different phage display technologies were employed to discover targets, and to generate and characterize novel antibodies against Listeria: antibody display for biomarker discovery and antibody generation; ORFeome display for target identification; and single-gene display for epitope characterization. With this approach, pyruvate dehydrogenase complex—enzyme 2 (PDC-E2) was defined as a new detection target for Listeria, as confirmed by immunomagnetic separation-mass spectrometry (IMS-MS). Immunoblot and fluorescence microscopy showed that this protein is accessible on the bacterial cell surface of living cells. Recombinant PDC-E2 was produced in E. coli and used to generate 16 additional antibodies. The resulting set of 20 monoclonal scFv-Fc was tested in indirect ELISA against 17 Listeria and 16 non-Listeria species. Two of them provided 100% sensitivity (CI 82.35–100.0%) and specificity (CI 78.20–100.0%), confirming PDC-E2 as a suitable target for the detection of Listeria. The binding region of 18 of these antibodies was analyzed, revealing that ≈ 90% (16/18) bind to the lipoyl domains (LD) of the target. The novel target PDC-E2 and highly specific antibodies against it offer new opportunities to improve the detection of Listeria.
Collapse
|
9
|
Jones ML. Use of bacteriophage for discovery of therapeutically relevant antibodies against infectious diseases. MICROBIOLOGY AUSTRALIA 2019. [DOI: 10.1071/ma19007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Scientists George P Smith and Gregory Winter were recently awarded half of the 2018 Nobel Prize for Chemistry for developing a technology to display exogenous peptides and proteins on the surface of bacteriophage. ‘Phage display' has revolutionised the development of monoclonal antibodies, allowing fully human-derived antibodies to be isolated from large antibody libraries. It has been used for the discovery of many blockbuster drugs, including Humira (adalimumab), the highest selling drug yearly since 2012, with US$18.4b in sales globally in 20171. Phage display can be used to isolate antibodies to almost any antigen for a wide range of applications including clinical use (for cancer, inflammatory conditions and infectious diseases), diagnostic use or as research tools. The technology is accessible to any laboratory equipped for molecular biology and bacteria culture.
Collapse
|
10
|
Frenzel A, Kügler J, Helmsing S, Meier D, Schirrmann T, Hust M, Dübel S. Designing Human Antibodies by Phage Display. Transfus Med Hemother 2017; 44:312-318. [PMID: 29070976 DOI: 10.1159/000479633] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
With six approved products and more than 60 candidates in clinical testing, human monoclonal antibody discovery by phage display is well established as a robust and reliable source for the generation of therapeutic antibodies. While a vast diversity of library generation philosophies and selection strategies have been conceived, the power of molecular design offered by controlling the in vitro selection step is still to be recognized by a broader audience outside of the antibody engineering community. Here, we summarize some opportunities and achievements, e.g., the generation of antibodies which could not be generated otherwise, and the design of antibody properties by different panning strategies, including the adjustment of kinetic parameters.
Collapse
Affiliation(s)
- André Frenzel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Yumab GmbH, Braunschweig, Germany
| | | | - Saskia Helmsing
- Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Doris Meier
- Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Michael Hust
- Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|