1
|
Catania M, Battipaglia C, Perego A, Salvi E, Maderna E, Cazzaniga FA, Rossini PM, Marra C, Vanacore N, Redolfi A, Perani D, Spadin P, Cotelli M, Cappa S, Caraglia N, Tiraboschi P, Tagliavini F, Di Fede G. Exploring the ability of plasma pTau217, pTau181 and beta-amyloid in mirroring cerebrospinal fluid biomarker profile of Mild Cognitive Impairment by the fully automated Lumipulse ® platform. Fluids Barriers CNS 2025; 22:9. [PMID: 39838411 PMCID: PMC11748262 DOI: 10.1186/s12987-025-00620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/12/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD). Plasma biomarkers are excellent candidates. However, their ability to reflect the cerebrospinal fluid (CSF) profile - that remains to date the gold standard for the biochemical diagnosis of AD - needs to be confirmed and validated before their implementation in clinical practice. The aims of this study are to analyse the correlation between CSF and plasma Aβ40, Aβ42, Aβ42/Aβ40 and pTau181, and to assess the diagnostic performance of plasma biomarkers in a cohort of subjects affected by Mild Cognitive Impairment (MCI). METHODS The study was performed on 306 subjects affected by MCI, enrolled in the context of the Italian Interceptor Project. Aβ40, Aβ42 and pTau181 were analysed in plasma and CSF, and pTau217 was measured in plasma. The fully automated chemiluminescence enzyme immunoassay and the Lumipulse® G600II (Fujirebio) instrument were used for all measurements. We analysed the correlations between CSF and plasma biomarkers and the differences of plasma biomarker concentrations after grouping MCI cases according to AT classification of CSF AD biomarker profiles. RESULTS We found statistically significant positive correlations between CSF and plasma Aβ42, Aβ42/Aβ40 ratio and pTau181. All the biomarkers, except Aβ40, showed differences in A+ vs. A-, A+T+ vs. A-T- and A+T- vs. A-T- patients. Moreover, Aβ42 and Aβ42/Aβ40 plasma levels were lower in A+T- compared to A-T- and A-T+ groups, and pTau181 and pTau217 plasma levels were higher in A+T+ compared to A+T-. Aβ42/Aβ40 and pTau217 showed a robust performance in distinguishing A+ from A- (AUC = 0.857 and 0.862, respectively) and A+T+ from A-T- (AUC = 0.866 and 0.911) subjects. CONCLUSIONS Our results suggest that plasma biomarkers, and especially Aβ42/Aβ40 ratio and pTau217, are promising candidates for the early detection of AD pathology.
Collapse
Grants
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Progetto Strategico AIFA - Interceptor Agenzia Italiana del Farmaco, Ministero della Salute
- Italian Ministry of Health - Ricerca Corrente
Collapse
Affiliation(s)
- Marcella Catania
- Neurology 5 - Neuropathology Unit, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| | - Claudia Battipaglia
- Neurology 5 - Neuropathology Unit, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Alberto Perego
- Fujirebio Italia S.r.l, Via Pontina Km 29, Pomezia, Roma, 00071, Italy
| | - Erika Salvi
- Computational multi-Omics of Neurological Disorders (MIND) Lab and Data Science Center, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Emanuela Maderna
- Neurology 5 - Neuropathology Unit, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Federico Angelo Cazzaniga
- Neurology 5 - Neuropathology Unit, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Paolo M Rossini
- Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele Roma, Via della Pisana 235, Rome, 00163, Italy
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Camillo Marra
- Neurology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo F. Vito 1, Rome, 00168, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, National Institute of Health, Viale Regina Elena 299, Rome, 00161, Italy
| | - Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia, 25125, Italy
| | - Daniela Perani
- Nuclear Medicine Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, 20132, Italy
| | - Patrizia Spadin
- Associazione Italiana Malattia di Alzheimer - AIMA, Via Varazze 6, Milan, 20149, Italy
| | - Maria Cotelli
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia, 25125, Italy
| | - Stefano Cappa
- University Institute of Advanced Studies, Piazza della Vittoria 15, Pavia, 27100, Italy
| | - Naike Caraglia
- Memory Clinic, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo F. Vito 1, Rome, 00168, Italy
| | - Pietro Tiraboschi
- Neurology 5 - Neuropathology Unit, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Fabrizio Tagliavini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Giuseppe Di Fede
- Neurology 5 - Neuropathology Unit, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| |
Collapse
|
2
|
Domingo G, Benussi L, Saraceno C, Bertuzzi M, Nicsanu R, Longobardi A, Bellini S, Cagnotto A, Salmona M, Binetti G, Ghidoni R. N-Terminally Truncated and Pyroglutamate-Modified Aβ Forms Are Measurable in Human Cerebrospinal Fluid and Are Potential Markers of Disease Progression in Alzheimer's Disease. Front Neurosci 2021; 15:708119. [PMID: 34393717 PMCID: PMC8358181 DOI: 10.3389/fnins.2021.708119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a pathology characterized by the accumulation in the brain of intracellular and extracellular amyloid-β (Aβ) aggregates, especially of Aβ1-40 and Aβ1-42 peptides. It is known that N-terminally truncated or modified Aβ forms also exist in AD brains and cerebrospinal fluid (CSF), and they play a key role in the pathogenesis of the disease. Herein, we developed an antibody-free method based on Solid-Phase Extraction and Electrospray Ionization Liquid Chromatography Mass Spectrometry for the identification and quantitation in human CSF of Aβ isoforms. In human CSF, we could detect and quantify a panel of 19 Aβ isoforms, including N-terminally truncated and pyroglutamate-modified forms, never quantified before in CSF. Among these, we identified novel N-terminally truncated Aβ species: four bound to copper and two phosphorylated forms, which were found to be the most common proteoforms in human CSF along with Aβ1-40, Aβ3-40, and AβpE11-42. We tested the newly developed and validated method in a pilot study on CSF from elderly individuals with subjective memory complaints (SMCs, n = 9), mild cognitive impairment (MCI, n = 18), and AD (n = 15); along with Aβ1-42, five N-terminally truncated forms (Aβ11-40, Aβ3-42, AβpE11-42, AβpE3-40, and Aβ4-40 Cu2+) are altered in AD/MCI. Thus, we demonstrated that N-terminally truncated and pyroglutamate-modified Aβ can be quantified in human CSF, and five of them, along with Aβ1-42, are potential markers of AD progression. The described method could represent a useful tool for patients' stratification and monitoring. Moreover, the newly identified Aβ CSF species might represent new potential therapeutic targets.
Collapse
Affiliation(s)
- Guido Domingo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Michela Bertuzzi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,MAC-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
3
|
Bistaffa E, Tagliavini F, Matteini P, Moda F. Contributions of Molecular and Optical Techniques to the Clinical Diagnosis of Alzheimer's Disease. Brain Sci 2020; 10:E815. [PMID: 33153223 PMCID: PMC7692713 DOI: 10.3390/brainsci10110815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. The distinctive neuropathological feature of AD is the intracerebral accumulation of two abnormally folded proteins: β-amyloid (Aβ) in the form of extracellular plaques, and tau in the form of intracellular neurofibrillary tangles. These proteins are considered disease-specific biomarkers, and the definite diagnosis of AD relies on their post-mortem identification in the brain. The clinical diagnosis of AD is challenging, especially in the early stages. The disease is highly heterogeneous in terms of clinical presentation and neuropathological features. This phenotypic variability seems to be partially due to the presence of distinct Aβ conformers, referred to as strains. With the development of an innovative technique named Real-Time Quaking-Induced Conversion (RT-QuIC), traces of Aβ strains were found in the cerebrospinal fluid of AD patients. Emerging evidence suggests that different conformers may transmit their strain signature to the RT-QuIC reaction products. In this review, we describe the current challenges for the clinical diagnosis of AD and describe how the RT-QuIC products could be analyzed by a surface-enhanced Raman spectroscopy (SERS)-based systems to reveal the presence of strain signatures, eventually leading to early diagnosis of AD with the recognition of individual disease phenotype.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, 20133 Milan, Italy;
| | - Fabrizio Tagliavini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Scientific Directorate, 20133 Milan, Italy;
| | - Paolo Matteini
- IFAC-CNR, Institute of Applied Physics “Nello Carrara”, National Research Council, 50019 Sesto Fiorentino, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, 20133 Milan, Italy;
| |
Collapse
|
4
|
Catania M, Di Fede G. One or more β-amyloid(s)? New insights into the prion-like nature of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:213-237. [PMID: 32958234 DOI: 10.1016/bs.pmbts.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Misfolding and aggregation of proteins play a central role in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's and Lewy Body diseases, Frontotemporal Lobar Degeneration and prion diseases. Increasing evidence supports the view that Aβ and tau, which are the two main molecular players in AD, share with the prion protein several "prion-like" features that can be relevant for disease pathogenesis. These features essentially include structural/conformational/biochemical variations, resistance to degradation by endogenous proteases, seeding ability, attitude to form neurotoxic assemblies, spreading and propagation of toxic aggregates, transmissibility of tau- and Aβ-related pathology to animal models. Following this view, part of the recent scientific literature has generated a new reading frame for AD pathophysiology, based on the application of the prion paradigm to the amyloid cascade hypothesis in an attempt to definitely explain the key events causing the disease and inducing its occurrence under different clinical phenotypes.
Collapse
Affiliation(s)
- Marcella Catania
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
5
|
Catania M, Giaccone G, Salmona M, Tagliavini F, Di Fede G. Dreaming of a New World Where Alzheimer's Is a Treatable Disorder. Front Aging Neurosci 2019; 11:317. [PMID: 31803047 PMCID: PMC6873113 DOI: 10.3389/fnagi.2019.00317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. It’s a chronic and untreatable neurodegenerative disease with irreversible progression and has important social and economic implications in terms of direct medical and social care costs. Despite prolonged and expensive efforts employed by the scientific community over the last few decades, no effective treatments are still available for patients, and the development of disease-modifying drugs is now a really urgent need. The recent failure of clinical trials based on the immunotherapeutic approach against amyloid-β(Aβ) protein questioned the validity of the “amyloid cascade hypothesis” as the molecular machinery causing the disease. Indeed, most attempts to design effective treatments for AD have been based until now on molecular targets suggested to be implicated in AD pathogenesis by the amyloid cascade hypothesis. However, mounting evidence from scientific literature supports the view of AD as a multifactorial disease that results from the concomitant action of multiple molecular players. This view, together with the lack of success of the disease-modifying single-target approaches, strongly suggests that AD drug design needs to be shifted towards multi-targeted compounds or drug combinations acting synergistically on the main core features of disease pathogenesis. The discovery of drug candidates targeting multiple factors involved in AD would greatly improve drug development. So, it is reasonable that upcoming strategies for the design of preventive and/or therapeutic agents for AD point to a multi-pronged approach including more than one druggable target to definitely defeat the disease.
Collapse
Affiliation(s)
- Marcella Catania
- Neurology V-Neuropathology Unit and Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgio Giaccone
- Neurology V-Neuropathology Unit and Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabrizio Tagliavini
- Neurology V-Neuropathology Unit and Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology V-Neuropathology Unit and Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
6
|
Ghidoni R, Squitti R, Siotto M, Benussi L. Innovative Biomarkers for Alzheimer's Disease: Focus on the Hidden Disease Biomarkers. J Alzheimers Dis 2019; 62:1507-1518. [PMID: 29504534 DOI: 10.3233/jad-170953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The criteria for the clinical diagnosis of AD include the analysis of biomarkers of the underlying brain disease pathology; a set of cerebrospinal fluid (CSF) tests, amyloid-β1-42 (Aβ42), total-tau (t-tau), and phosphorylated tau (p-tau), are available and their performance in a clinical setting has been assessed in several studies. Thus, in dementia research, great advances have been made in the discovery of putative biomarkers; however, disappointingly, few of them have been translated into clinically applicable assays. To find biomarkers able to reliably detect AD pathology already at prodromal stages and in blood is even more important. Recent technical breakthroughs have provided ultrasensitive methods that allow the detection of brain-specific proteins in blood. In the present review, we will focus on the usefulness of ultrasensitive technologies for biomarker discovery and trace elements detection; moreover, we will review studies on circulating nano-compartments, a promising novel source of material for molecular diagnostics.
Collapse
Affiliation(s)
- Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
7
|
Artuso V, Benussi L, Ghidoni R, Moradi-Bachiller S, Fusco F, Curtolo S, Roiter I, Forloni G, Albani D. Asymptomatic Carriers of Presenilin-1 E318G Variant Show no Cerebrospinal Fluid Biochemical Signs Suggestive of Alzheimer's disease in a Family with Late-onset Dementia. Curr Alzheimer Res 2018; 16:1-7. [PMID: 30381075 DOI: 10.2174/1567205015666181031150345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Presenilin-1 (PSEN-1) is a component of the γ-secretase complex involved in β-amyloid Precursor Protein (AβPP) processing. Usually, Alzheimer's disease (AD)-linked mutations in the PSEN-1 gene lead to the early onset and increase the production of the aggregation-prone peptide Aβ42. However, the PSEN-1 E318G variant has an unclear pathogenic role and is recently reported as a genetic risk factor for AD. In particular, E318G variant presence correlated with increased cerebrospinal fluid (CSF) levels of Total Tau (t-tau) and Phosphorylated Tau (p-tau). OBJECTIVE We describe a large Italian family, which we followed from January 2003 to January 2018, with the late-onset AD and the E318G variant, with the aim of assessing E318G-associated CSF or plasma biochemical changes in biomarkers of dementia. METHOD CSF Aβ42, t-tau and p-tau, plasma Aβ42 and Aβ40 were assessed by ELISA tests, while CSF amyloid peptides profile was investigated by mass spectrometry. RESULTS We did not find any changes in CSF biochemical markers (Aβ42, t-tau, p-tau and amyloid peptides) of asymptomatic E318G carriers in 2010 and 2012, but plasma Aβ40 was increased at the same times. From 2003 to 2018, no asymptomatic E318G carrier developed AD. CONCLUSION Our follow-up of this family may help elucidate E318G's role in AD and globally points to a null effect of this variant.
Collapse
Affiliation(s)
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Soraya Moradi-Bachiller
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy
| | - Federica Fusco
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy
| | - Stefano Curtolo
- ULSS 2 Marca Trevigiana, Ca' Foncello Hospital, Piazzale Ospedale, 1, 31100 Treviso, Italy
| | - Ignazio Roiter
- ULSS 2 Marca Trevigiana, Ca' Foncello Hospital, Piazzale Ospedale, 1, 31100 Treviso, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy
| |
Collapse
|
8
|
Di Fede G, Catania M, Maderna E, Ghidoni R, Benussi L, Tonoli E, Giaccone G, Moda F, Paterlini A, Campagnani I, Sorrentino S, Colombo L, Kubis A, Bistaffa E, Ghetti B, Tagliavini F. Molecular subtypes of Alzheimer's disease. Sci Rep 2018; 8:3269. [PMID: 29459625 PMCID: PMC5818536 DOI: 10.1038/s41598-018-21641-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Protein misfolding and aggregation is a central feature of several neurodegenerative disorders including Alzheimer's disease (AD), in which assemblies of amyloid β (Aβ) peptides accumulate in the brain in the form of parenchymal and/or vascular amyloid. A widely accepted concept is that AD is characterized by distinct clinical and neuropathological phenotypes. Recent studies revealed that Aβ assemblies might have structural differences among AD brains and that such pleomorphic assemblies can correlate with distinct disease phenotypes. We found that in both sporadic and inherited forms of AD, amyloid aggregates differ in the biochemical composition of Aβ species. These differences affect the physicochemical properties of Aβ assemblies including aggregation kinetics, resistance to degradation by proteases and seeding ability. Aβ-amyloidosis can be induced and propagated in animal models by inoculation of brain extracts containing aggregated Aβ. We found that brain homogenates from AD patients with different molecular profiles of Aβ are able to induce distinct patterns of Aβ-amyloidosis when injected into mice. Overall these data suggest that the assembly of mixtures of Aβ peptides into different Aβ seeds leads to the formation of distinct subtypes of amyloid having distinctive physicochemical and biological properties which result in the generation of distinct AD molecular subgroups.
Collapse
Affiliation(s)
- Giuseppe Di Fede
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Marcella Catania
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Emanuela Maderna
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Elisa Tonoli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Giorgio Giaccone
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Fabio Moda
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Anna Paterlini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | | | | | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Adriana Kubis
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
- Department of Toxicology, Wroclaw Medical University, Wrocław, Poland
| | - Edoardo Bistaffa
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | | |
Collapse
|
9
|
Penn M, Mausner-Fainberg K, Golan M, Karni A. High serum levels of BMP-2 correlate with BMP-4 and BMP-5 levels and induce reduced neuronal phenotype in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2017; 310:120-128. [PMID: 28778435 DOI: 10.1016/j.jneuroim.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022]
Abstract
Blockage of bone morphogenetic protein (BMP) signaling is required for differentiation of neurons and oligodendrocytes from neural stem cells (NSCs). Sera of untreated relapsing-remitting multiple sclerosis (RR-MS) patients expressed significantly higher levels of BMP-2 compared to sera of healthy controls. BMP-2 levels correlated with BMP-4 and -5 levels only in sera of untreated MS patients. Furthermore, sera of untreated patients inhibited the neuronal differentiation of RA-treated P19 cells, which was associated with induction of phospho-SMAD signaling pathway. These results suggest that BMP-2 sera levels may play a role in the failure of remyelination and neuro-regeneration in RR-MS.
Collapse
Affiliation(s)
- Moran Penn
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karin Mausner-Fainberg
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Maya Golan
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Arnon Karni
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Lombardi G, Berti V, Tedde A, Bagnoli S, Piaceri I, Polito C, Lucidi G, Ferrari C, Ginestroni A, Moretti M, Pupi A, Nacmias B, Sorbi S. Low Florbetapir PET Uptake and Normal Aβ1-42 Cerebrospinal Fluid in an APP Ala713Thr Mutation Carrier. J Alzheimers Dis 2017; 57:697-703. [DOI: 10.3233/jad-161170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Valentina Berti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Andrea Tedde
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Polito
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Giulia Lucidi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Don Gnocchi, Florence, Italy
| | | | | | | | - Alberto Pupi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Don Gnocchi, Florence, Italy
| |
Collapse
|