1
|
Belder CRS, Boche D, Nicoll JAR, Jaunmuktane Z, Zetterberg H, Schott JM, Barkhof F, Fox NC. Brain volume change following anti-amyloid β immunotherapy for Alzheimer's disease: amyloid-removal-related pseudo-atrophy. Lancet Neurol 2024; 23:1025-1034. [PMID: 39304242 DOI: 10.1016/s1474-4422(24)00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
Progressive cerebral volume loss on MRI is a hallmark of Alzheimer's disease and has been widely used as an outcome measure in clinical trials, with the prediction that disease-modifying treatments would slow loss. However, in trials of anti-amyloid immunotherapy, the participants who received treatment had excess volume loss. Explanations for this observation range from reduction of amyloid β plaque burden and related inflammatory changes through to treatment-induced toxicity. The excess volume changes are characteristic of only those immunotherapies that achieve amyloid β lowering; are compatible with plaque removal; and evidence to date does not suggest an association with harmful effects. Based on the current evidence, we suggest that these changes can be described as amyloid-removal-related pseudo-atrophy. Better understanding of the causes and consequences of these changes is important to enable informed decisions about treatments. Patient-level analyses of data from the trials are urgently needed, along with longitudinal follow-up and neuroimaging data, to determine the long-term trajectory of these volume changes and their clinical correlates. Post-mortem examination of cerebral tissue from treated patients and evaluation of potential correlation with antemortem neuroimaging findings are key priorities.
Collapse
Affiliation(s)
- Christopher R S Belder
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute at UCL, University College London, London, UK; Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, University College London, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Special Administrative Region, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute at UCL, University College London, London, UK.
| |
Collapse
|
2
|
Pascoal TA, Aguzzoli CS, Lussier FZ, Crivelli L, Suemoto CK, Fortea J, Rosa-Neto P, Zimmer ER, Ferreira PCL, Bellaver B. Insights into the use of biomarkers in clinical trials in Alzheimer's disease. EBioMedicine 2024; 108:105322. [PMID: 39366844 DOI: 10.1016/j.ebiom.2024.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
Biomarkers have been instrumental in population selection and disease monitoring in clinical trials of recently FDA-approved drugs targeting amyloid-β to slow the progression of Alzheimer's disease (AD). As new therapeutic strategies and biomarker techniques emerge, the importance of biomarkers in drug development is growing exponentially. In this emerging landscape, biomarkers are expected to serve a wide range of contexts of use in clinical trials focusing on AD and related dementias. The joint FDA-NIH BEST (Biomarkers, EndpointS, and other Tools) framework provides standardised terminology to facilitate communication among stakeholders in this increasingly complex field. This review explores various applications of biomarkers relevant to AD clinical trials, using the BEST resource as a reference. For simplicity, we predominantly provide contextual characterizations of biomarkers use from the perspective of drugs targeting amyloid-β and tau proteins. However, general definitions and concepts can be extrapolated to other targets.
Collapse
Affiliation(s)
- Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | | | - Firoza Z Lussier
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Lucía Crivelli
- Department of Cognitive Neurology, Fleni, Buenos Aires, Argentina
| | - Claudia K Suemoto
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, Brazil
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Eduardo R Zimmer
- Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil; Graduate Program in Biological Sciences, Biochemistry (PPGBioq), and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Pamela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, Hansson O, Ho C, Jagust W, McDade E, Molinuevo JL, Okonkwo OC, Pani L, Rafii MS, Scheltens P, Siemers E, Snyder HM, Sperling R, Teunissen CE, Carrillo MC. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup. Alzheimers Dement 2024; 20:5143-5169. [PMID: 38934362 PMCID: PMC11350039 DOI: 10.1002/alz.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
The National Institute on Aging and the Alzheimer's Association convened three separate work groups in 2011 and single work groups in 2012 and 2018 to create recommendations for the diagnosis and characterization of Alzheimer's disease (AD). The present document updates the 2018 research framework in response to several recent developments. Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine (e.g., oncology), and is becoming a unifying concept common to all neurodegenerative diseases, not just AD. The present document is consistent with this principle. Our intent is to present objective criteria for diagnosis and staging AD, incorporating recent advances in biomarkers, to serve as a bridge between research and clinical care. These criteria are not intended to provide step-by-step clinical practice guidelines for clinical workflow or specific treatment protocols, but rather serve as general principles to inform diagnosis and staging of AD that reflect current science. HIGHLIGHTS: We define Alzheimer's disease (AD) to be a biological process that begins with the appearance of AD neuropathologic change (ADNPC) while people are asymptomatic. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms. Early-changing Core 1 biomarkers (amyloid positron emission tomography [PET], approved cerebrospinal fluid biomarkers, and accurate plasma biomarkers [especially phosphorylated tau 217]) map onto either the amyloid beta or AD tauopathy pathway; however, these reflect the presence of ADNPC more generally (i.e., both neuritic plaques and tangles). An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of AD and to inform clinical decision making throughout the disease continuum. Later-changing Core 2 biomarkers (biofluid and tau PET) can provide prognostic information, and when abnormal, will increase confidence that AD is contributing to symptoms. An integrated biological and clinical staging scheme is described that accommodates the fact that common copathologies, cognitive reserve, and resistance may modify relationships between clinical and biological AD stages.
Collapse
Affiliation(s)
| | - J. Scott Andrews
- Global Evidence & OutcomesTakeda Pharmaceuticals Company LimitedCambridgeMassachusettsUSA
| | - Thomas G. Beach
- Civin Laboratory for NeuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Teresa Buracchio
- Office of NeuroscienceU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Ana Graf
- NovartisNeuroscience Global Drug DevelopmentBaselSwitzerland
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, MalmöLundSweden
| | - Carole Ho
- DevelopmentDenali TherapeuticsSouth San FranciscoCaliforniaUSA
| | - William Jagust
- School of Public Health and Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Eric McDade
- Department of NeurologyWashington University St. Louis School of MedicineSt. LouisMissouriUSA
| | - Jose Luis Molinuevo
- Department of Global Clinical Development H. Lundbeck A/SExperimental MedicineCopenhagenDenmark
| | - Ozioma C. Okonkwo
- Department of Medicine, Division of Geriatrics and GerontologyUniversity of Wisconsin School of MedicineMadisonWisconsinUSA
| | - Luca Pani
- University of MiamiMiller School of MedicineMiamiFloridaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of Medicine at the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Philip Scheltens
- Amsterdam University Medical Center (Emeritus)NeurologyAmsterdamthe Netherlands
| | - Eric Siemers
- Clinical ResearchAcumen PharmaceuticalsZionsvilleIndianaUSA
| | - Heather M. Snyder
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| | - Reisa Sperling
- Department of Neurology, Brigham and Women's HospitalMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Department of Laboratory MedicineAmsterdam UMC, Neurochemistry LaboratoryAmsterdamthe Netherlands
| | - Maria C. Carrillo
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
4
|
Hofe IV, Stricker BH, Vernooij MW, Ikram MK, Ikram MA, Wolters FJ. Benzodiazepine use in relation to long-term dementia risk and imaging markers of neurodegeneration: a population-based study. BMC Med 2024; 22:266. [PMID: 38951846 PMCID: PMC11218055 DOI: 10.1186/s12916-024-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Benzodiazepine use is common, particularly in older adults. Benzodiazepines have well-established acute adverse effects on cognition, but long-term effects on neurodegeneration and dementia risk remain uncertain. METHODS We included 5443 cognitively healthy (MMSE ≥ 26) participants from the population-based Rotterdam Study (57.4% women, mean age 70.6 years). Benzodiazepine use from 1991 until baseline (2005-2008) was derived from pharmacy dispensing records, from which we determined drug type and cumulative dose. Benzodiazepine use was defined as prescription of anxiolytics (ATC-code: N05BA) or sedative-hypnotics (ATC-code: N05CD) between inception of pharmacy records and study baseline. Cumulative dose was calculated as the sum of the defined daily doses for all prescriptions. We determined the association with dementia risk until 2020 using Cox regression. Among 4836 participants with repeated brain MRI, we further determined the association of benzodiazepine use with changes in neuroimaging markers using linear mixed models. RESULTS Of all 5443 participants, 2697 (49.5%) had used benzodiazepines at any time in the 15 years preceding baseline, of whom 1263 (46.8%) used anxiolytics, 530 (19.7%) sedative-hypnotics, and 904 (33.5%) used both; 345 (12.8%) participants were still using at baseline assessment. During a mean follow-up of 11.2 years, 726 participants (13.3%) developed dementia. Overall, use of benzodiazepines was not associated with dementia risk compared to never use (HR [95% CI]: 1.06 [0.90-1.25]), irrespective of cumulative dose. Risk estimates were somewhat higher for any use of anxiolytics than for sedative-hypnotics (HR 1.17 [0.96-1.41] vs 0.92 [0.70-1.21]), with strongest associations for high cumulative dose of anxiolytics (HR [95% CI] 1.33 [1.04-1.71]). In imaging analyses, current use of benzodiazepine was associated cross-sectionally with lower brain volumes of the hippocampus, amygdala, and thalamus and longitudinally with accelerated volume loss of the hippocampus and to a lesser extent amygdala. However, imaging findings did not differ by type of benzodiazepines or cumulative dose. CONCLUSIONS In this population-based sample of cognitively healthy adults, overall use of benzodiazepines was not associated with increased dementia risk, but potential class-dependent adverse effects and associations with subclinical markers of neurodegeneration may warrant further investigation.
Collapse
Affiliation(s)
- Ilse Vom Hofe
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Alzheimer Centre Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank J Wolters
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Radiology & Nuclear Medicine, Alzheimer Centre Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Spotorno N, Strandberg O, Stomrud E, Janelidze S, Blennow K, Nilsson M, van Westen D, Hansson O. Diffusion MRI tracks cortical microstructural changes during the early stages of Alzheimer's disease. Brain 2024; 147:961-969. [PMID: 38128551 PMCID: PMC10907088 DOI: 10.1093/brain/awad428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-β (Aβ), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study. Participants were stratified following the Aβ/tau (AT) framework. The results revealed a widespread increase in mean diffusivity over time, including both temporal and parietal cortical regions, in Aβ-positive but still tau-negative individuals. These increases were steeper in Aβ-positive and tau-positive individuals and robust to the inclusion of cortical thickness in the model. A steeper increase in mean diffusivity was also associated with both changes over time in fluid markers reflecting astrocytic activity (i.e. plasma level of glial fibrillary acidic protein and CSF levels of YKL-40) and worsening of cognitive performance (all P < 0.01). By tracking cortical microstructural changes over time and possibly reflecting variations related to the astrocytic response, cortical mean diffusivity emerges as a promising marker for tracking treatments-induced microstructural changes in clinical trials.
Collapse
Affiliation(s)
- Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Markus Nilsson
- Diagnostic Radiology, Institution for Clinical Sciences, Lund University, 221 85 Lund, Sweden
| | - Danielle van Westen
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
- Diagnostic Radiology, Institution for Clinical Sciences, Lund University, 221 85 Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28 Malmö, Sweden
| |
Collapse
|
6
|
Riviere M, Langbaum JB, Turner RS, Rinne JO, Sui Y, Cazorla P, Ricart J, Meneses K, Caputo A, Tariot PN, Reiman EM, Graf A. Effects of the active amyloid beta immunotherapy CAD106 on PET measurements of amyloid plaque deposition in cognitively unimpaired APOE ε4 homozygotes. Alzheimers Dement 2024; 20:1839-1850. [PMID: 38145469 PMCID: PMC10984441 DOI: 10.1002/alz.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Alzheimer's Prevention Initiative Generation Study 1 evaluated amyloid beta (Aβ) active immunotherapy (vaccine) CAD106 and BACE-1 inhibitor umibecestat in cognitively unimpaired 60- to 75-year-old participants at genetic risk for Alzheimer's disease (AD). The study was reduced in size and terminated early. Results from the CAD106 cohort are presented. METHODS Sixty-five apolipoprotein E ε4 homozygotes with/without amyloid deposition received intramuscular CAD106 450 μg (n = 42) or placebo (n = 23) at baseline; Weeks 1, 7, 13; and quarterly; 51 of them had follow-up Aβ positron emission tomography (PET) scans at 18 to 24 months. RESULTS CAD106 induced measurable serum Aβ immunoglobulin G titers in 41/42 participants, slower rates of Aβ plaque accumulation (mean [standard deviation] annualized change from baseline in amyloid PET Centiloid: -0.91[5.65] for CAD106 versus 8.36 [6.68] for placebo; P < 0.001), and three amyloid-related imaging abnormality cases (one symptomatic). DISCUSSION Despite early termination, these findings support the potential value of conducting larger prevention trials of Aβ active immunotherapies in individuals at risk for AD. HIGHLIGHTS This was the first amyloid-lowering prevention trial in persons at genetic risk of late-onset Alzheimer's disease (AD). Active immunotherapy targeting amyloid (CAD106) was tested in this prevention trial. CAD106 significantly slowed down amyloid plaque deposition in apolipoprotein E homozygotes. CAD106 was generally safe and well tolerated, with only three amyloid-related imaging abnormality cases (one symptomatic). Such an approach deserves further evaluation in larger AD prevention trials.
Collapse
Affiliation(s)
| | | | - R. Scott Turner
- Department of NeurologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Juha O. Rinne
- Turku PET CentreUniversity of Turku and Turku University HospitalTurkuFinland
- Department of NeurologyCRST – Clinical Research Services TurkuTurkuFinland
| | - Yihan Sui
- Clinical Development, NeuroscienceNovartis PharmaceuticalsEast HanoverNew JerseyUSA
| | - Pilar Cazorla
- Clinical Development, NeuroscienceNovartis PharmaceuticalsEast HanoverNew JerseyUSA
| | - Javier Ricart
- Clinical Development, NeuroscienceNovartis Farmaceutica SABarcelonaSpain
| | - Kathleen Meneses
- Clinical Development, NeuroscienceNovartis PharmaceuticalsEast HanoverNew JerseyUSA
| | - Angelika Caputo
- Clinical Development, NeuroscienceNovartis Pharma AGBaselSwitzerland
| | | | | | - Ana Graf
- Clinical Development, NeuroscienceNovartis Pharma AGBaselSwitzerland
| |
Collapse
|
7
|
Høilund-Carlsen PF, Alavi A, Barrio JR. PET/CT/MRI in Clinical Trials of Alzheimer's Disease. J Alzheimers Dis 2024; 101:S579-S601. [PMID: 39422954 DOI: 10.3233/jad-240206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
With the advent of PET imaging in 1976, 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-PET became the preferred method for in vivo investigation of cerebral processes, including regional hypometabolism in Alzheimer's disease. With the emergence of amyloid-PET tracers, [11C]Pittsburgh Compound-B in 2004 and later [18F]florbetapir, [18F]florbetaben, and [18F]flumetamol, amyloid-PET has replaced FDG-PET in Alzheimer's disease anti-amyloid clinical trial treatments to ensure "amyloid positivity" as an entry criterion, and to measure treatment-related decline in cerebral amyloid deposits. MRI has been used to rule out other brain diseases and screen for 'amyloid-related imaging abnormalities' (ARIAs) of two kinds, ARIA-E and ARIA-H, characterized by edema and micro-hemorrhage, respectively, and, to a lesser extent, to measure changes in cerebral volumes. While early immunotherapy trials of Alzheimer's disease showed no clinical effects, newer monoclonal antibody trials reported decreases of 27% to 85% in the cerebral amyloid-PET signal, interpreted by the Food and Drug Administration as amyloid removal expected to result in a reduction in clinical decline. However, due to the lack of diagnostic specificity of amyloid-PET tracers, amyloid positivity cannot prevent the inclusion of non-Alzheimer's patients and even healthy subjects in these clinical trials. Moreover, the "decreasing amyloid accumulation" assessed by amyloid-PET imaging has questionable quantitative value in the presence of treatment-related brain damage (ARIAs). Therefore, future Alzheimer's clinical trials should disregard amyloid-PET imaging and focus instead on assessment of regional brain function by FDG-PET and MRI monitoring of ARIAs and brain volume loss in all trial patients.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
8
|
Høilund-Carlsen PF, Revheim ME, Costa T, Alavi A, Kepp KP, Sensi SL, Perry G, Robakis NK, Barrio JR, Vissel B. Passive Alzheimer's immunotherapy: A promising or uncertain option? Ageing Res Rev 2023; 90:101996. [PMID: 37414156 DOI: 10.1016/j.arr.2023.101996] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The US Food and Drug Administration (FDA)'s recent accelerated approval of two anti-amyloid antibodies for treatment of Alzheimer's disease (AD), aducanumab and lecanemab, has caused substantial debate. To inform this debate, we reviewed the literature on randomized clinical trials conducted with eight such antibodies focusing on clinical efficacy, cerebral amyloid removal, amyloid-related imaging abnormalities (ARIAs) and cerebral volumes to the extent such measurements have been reported. Two antibodies, donanemab and lecanemab, have demonstrated clinical efficacy, but these results remain uncertain. We further argue that the decreased amyloid PET signal in these trials is unlikely to be a one-to-one reflection of amyloid removal, but rather a reflection of increased therapy-related brain damage, as supported by the increased incidence of ARIAs and reported loss of brain volume. Due to these uncertainties of benefit and risk, we recommend that the FDA pauses existing approvals and approval of new antibodies until results of phase 4 studies with these drugs are available to inform on these risk-benefit uncertainties. We recommend that the FDA prioritize FDG PET and detection of ARIAs and accelerated brain volume loss with MRI in all trial patients, and neuropathological examination of all patients who die in these phase 4 trials.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kasper P Kepp
- Section of Biophysical and Biomedicinal Chemistry, DTU Chemistry, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Stefano L Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CAST-Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Mind Impairments and Neurological Disorders-iMIND, University of California, Irvine, Irvine, CA, USA; ITAB-Institute of Advanced Biomedical Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Bryce Vissel
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus Faculty of Medicine and Health, UNSW, Sydney, Australia; St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
9
|
Lyu D, Lyu X, Huang L, Fang B. Effects of three kinds of anti-amyloid-β drugs on clinical, biomarker, neuroimaging outcomes and safety indexes: A systematic review and meta-analysis of phase II/III clinical trials in Alzheimer's disease. Ageing Res Rev 2023; 88:101959. [PMID: 37217078 DOI: 10.1016/j.arr.2023.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE To investigate the effects of the three kinds of anti-amyloid-β (Aβ) drugs on cognitive and other functions, fluid and neuroimaging biomarkers, and safety on patients with Alzheimer's disease (AD), and rank the three kinds of anti-Aβ drugs. METHODS We searched Medline, Embase, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and AlzForum from inception to January 21, 2023 to include randomized controlled clinical trials. Random effects meta-analyses were performed. RESULTS Forty-one clinical trials (20929 participants, 9167 male) were included. Anti-Aβ drugs had significant but relatively low efficacy in preventing cognitive decline (ADAS-Cog SMD -0.07, 95% CI: -0.10 to -0.03, p < 0.001; CDR-SOB -0.05, -0.09 to -0.01, p = 0.017). Instrumental variable meta-analysis and trial sequential analysis confirmed the reliability of the pooled estimation. Beneficial effects were also observed by assessing other cognitive and activity of daily living scales and biomarkers, with acceptable safety of anti-Aβ drugs. Meta-regression demonstrated significant association between higher baseline mini-mental statement examination scores (MMSE) and better cognitive protective effects on cognitive function (ADAS-Cog β: -0.02, -0.05 to 0.00, p = 0.017) and clearance of pathological productions of anti-Aβ drugs. Network meta-analysis ranked the passive immunotherapy drugs to have the best cognitive efficacy, followed by active immunotherapy and small molecule drugs. CONCLUSION Anti-Aβ drugs have relatively low efficacy in preventing cognitive decline, and they reduce pathological productions with acceptable safety. Patients with higher baseline MMSE scores benefit more from anti-Aβ drugs. Passive immunotherapy anti-Aβ drugs show relatively better efficacy than active immunotherapy and small molecule anti-Aβ drugs.
Collapse
Affiliation(s)
- Diyang Lyu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Xuanxin Lyu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Li Huang
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Mummery CJ, Börjesson-Hanson A, Blackburn DJ, Vijverberg EGB, De Deyn PP, Ducharme S, Jonsson M, Schneider A, Rinne JO, Ludolph AC, Bodenschatz R, Kordasiewicz H, Swayze EE, Fitzsimmons B, Mignon L, Moore KM, Yun C, Baumann T, Li D, Norris DA, Crean R, Graham DL, Huang E, Ratti E, Bennett CF, Junge C, Lane RM. Tau-targeting antisense oligonucleotide MAPT Rx in mild Alzheimer's disease: a phase 1b, randomized, placebo-controlled trial. Nat Med 2023; 29:1437-1447. [PMID: 37095250 PMCID: PMC10287562 DOI: 10.1038/s41591-023-02326-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/29/2023] [Indexed: 04/26/2023]
Abstract
Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989 .
Collapse
Affiliation(s)
- Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK.
| | | | - Daniel J Blackburn
- Sheffield Teaching Hospital NHS Foundation Trust, NIHR Sheffield Clinical Research Facility and NIHR Sheffield Biomedical Research Centre, Royal Hallamshire Hospital, Sheffield, UK
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Peter Paul De Deyn
- University Medical Center Groningen / RUG, Alzheimer Center Groningen, Groningen, the Netherlands
| | - Simon Ducharme
- Douglas Mental Health University Institute and McConnell Brain Imaging Centre of the Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael Jonsson
- Memory Clinic, Psychiatry - Cognition and Geriatric Psychiatry, Sahlgrenska University Hospital, Gothenburg/Molndal, Sweden
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE, and Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Juha O Rinne
- CRST Oy; Turku PET Centre University of Turku and Turku University Hospital, Turku, Finland
| | - Albert C Ludolph
- Department of Neurology University of Ulm and DZNE, Ulm, Germany
| | - Ralf Bodenschatz
- Pharmakologisches Studienzentrum Chemnitz GmbH Mittweida, Mittweida, Germany
| | | | | | | | | | | | - Chris Yun
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Dan Li
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ljubenkov PA, Rabinovici GD. Silencing tau to treat early Alzheimer's disease. Nat Med 2023:10.1038/s41591-023-02357-w. [PMID: 37198457 DOI: 10.1038/s41591-023-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Peter A Ljubenkov
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Alves F, Kalinowski P, Ayton S. Accelerated Brain Volume Loss Caused by Anti-β-Amyloid Drugs: A Systematic Review and Meta-analysis. Neurology 2023; 100:e2114-e2124. [PMID: 36973044 PMCID: PMC10186239 DOI: 10.1212/wnl.0000000000207156] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/20/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate brain volume changes caused by different subclasses of anti-β-amyloid (Aβ) drugs trailed in patients with Alzheimer disease. METHODS PubMed, Embase, and ClinicalTrials.gov databases were searched for clinical trials of anti-Aβ drugs. This systematic review and meta-analysis included adults enrolled in randomized controlled trials of anti-Aβ drugs (n = 8,062-10,279). The inclusion criteria were as follows: (1) randomized controlled trials of patients treated with anti-Aβ drugs that have demonstrated to favorably change at least one biomarker of pathologic Aβ and (2) detailed MRI data sufficient to assess the volumetric changes in at least one brain region. MRI brain volumes were used as the primary outcome measure; brain regions commonly reported include hippocampus, lateral ventricle, and whole brain. Amyloid-related imaging abnormalities (ARIAs) were investigated when reported in clinical trials. Of the 145 trials reviewed, 31 were included in the final analyses. RESULTS A meta-analysis on the highest dose of each trial on hippocampus, ventricle, and whole brain revealed drug-induced acceleration of volume changes that varied by anti-Aβ drug class. Secretase inhibitors accelerated atrophy to the hippocampus (Δ placebo - Δ drug: -37.1 µL [19.6% more than placebo]; 95% CI -47.0 to -27.1) and whole brain (Δ placebo - Δ drug: -3.3 mL [21.8% more than placebo]; 95% CI -4.1 to 2.5). Conversely, ARIA-inducing monoclonal antibodies accelerated ventricular enlargement (Δ placebo - Δ drug: +2.1 mL [38.7% more than placebo]; 95% CI 1.5-2.8) where a striking correlation between ventricular volume and ARIA frequency was observed (r = 0.86, p = 6.22 × 10-7). Mild cognitively impaired participants treated with anti-Aβ drugs were projected to have a material regression toward brain volumes typical of Alzheimer dementia ∼8 months earlier than if they were untreated. DISCUSSION These findings reveal the potential for anti-Aβ therapies to compromise long-term brain health by accelerating brain atrophy and provide new insight into the adverse impact of ARIA. Six recommendations emerge from these findings.
Collapse
Affiliation(s)
- Francesca Alves
- From the The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Pawel Kalinowski
- From the The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Scott Ayton
- From the The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia.
| |
Collapse
|
13
|
Kepp KP, Sensi SL, Johnsen KB, Barrio JR, Høilund-Carlsen PF, Neve RL, Alavi A, Herrup K, Perry G, Robakis NK, Vissel B, Espay AJ. The Anti-Amyloid Monoclonal Antibody Lecanemab: 16 Cautionary Notes. J Alzheimers Dis 2023; 94:497-507. [PMID: 37334596 DOI: 10.3233/jad-230099] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
After the CLARITY-AD clinical trial results of lecanemab were interpreted as positive, and supporting the amyloid hypothesis, the drug received accelerated Food and Drug Administration approval. However, we argue that benefits of lecanemab treatment are uncertain and may yield net harm for some patients, and that the data do not support the amyloid hypothesis. We note potential biases from inclusion, unblinding, dropouts, and other issues. Given substantial adverse effects and subgroup heterogeneity, we conclude that lecanemab's efficacy is not clinically meaningful, consistent with numerous analyses suggesting that amyloid-β and its derivatives are not the main causative agents of Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Kasper P Kepp
- Department of Chemistry, Section of Biophysical and Biomedicinal Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology - CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Kasper B Johnsen
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery Group, Aalborg University, Aalborg, Denmark
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rachael L Neve
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
14
|
Mazer NA, Hofmann C, Lott D, Gieschke R, Klein G, Boess F, Grimm HP, Kerchner GA, Baudler‐Klein M, Smith J, Doody RS. Development of a quantitative semi‐mechanistic model of Alzheimer's disease based on the amyloid/tau/neurodegeneration framework (the Q‐ATN model). Alzheimers Dement 2022. [DOI: 10.1002/alz.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Norman A. Mazer
- Roche Pharma Research & Early Development Roche Innovation Center Basel Switzerland
| | - Carsten Hofmann
- Roche Pharma Research & Early Development Roche Innovation Center Basel Switzerland
| | - Dominik Lott
- Roche Pharma Research & Early Development Roche Innovation Center Basel Switzerland
| | - Ronald Gieschke
- Roche Pharma Research & Early Development Roche Innovation Center Basel Switzerland
| | - Gregory Klein
- Roche Pharma Research & Early Development Roche Innovation Center Basel Switzerland
| | | | - Hans Peter Grimm
- Roche Pharma Research & Early Development Roche Innovation Center Basel Switzerland
| | - Geoffrey A. Kerchner
- Roche Pharma Research & Early Development Roche Innovation Center Basel Switzerland
| | | | | | - Rachelle S. Doody
- F. Hoffmann‐La Roche Ltd Basel Switzerland
- Genentech, Inc. South San Francisco California USA
| | | |
Collapse
|
15
|
Svaldi DO, Higgins IA, Holdridge KC, Yaari R, Case M, Bracoud L, Scott D, Shcherbinin S, Sims JR. Magnetic resonance imaging measures of brain volumes across the EXPEDITION trials in mild and moderate Alzheimer's disease dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12313. [PMID: 35783453 PMCID: PMC9237342 DOI: 10.1002/trc2.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 11/07/2022]
Abstract
Introduction Solanezumab is a monoclonal antibody that preferentially binds soluble amyloid beta and promotes its clearance from the brain. The aim of this post hoc analysis was to assess the effect of low-dose solanezumab (400 mg) on global brain volume measures in patients with mild or moderate Alzheimer's disease (AD) dementia quantified using volumetric magnetic resonance imaging (vMRI) data from the EXPEDITION clinical trial program. Methods Patients with mild or moderate AD (EXPEDITION and EXPEDITION2) and mild AD (EXPEDITION3), were treated with either placebo or solanezumab (400 mg) every 4 weeks (Q4W) for 76 weeks. vMRI scans were acquired at baseline and at 80 weeks from 427 MRI facilities using a standardized imaging protocol. Whole brain volume (WBV) and ventricle volume (VV) changes were estimated at 80 weeks using either boundary shift integral (EXPEDITION and EXPEDITION2) or tensor-based morphometry (EXPEDITION3). Results The pooled cohort used for this study consisted of participants with vMRI at baseline and week 80 across the three trials. Analyzed patient subgroups comprised full patient cohort (N = 2933), apolipoprotein E (APOE) ε4+ carriers (N = 1835), and patients with mild (N = 2497) or moderate AD dementia (N = 428). No significant effect (all P-values ≥.05) of treatment was observed in the pooled sample, individual trials, or subgroups of patients with mild or moderate AD or APOE ε4 carriers, in either WBV or VV change. Discussion Analysis of patients with mild or moderate AD dementia from baseline to 80 weeks using vMRI measures of WBV and VV changes suggested that low-dose solanezumab was not linked to changes in volumes at 80 weeks. Analysis of the pooled cohort did not demonstrate an effect on brain volumes with treatment. Evaluation of a higher dose of solanezumab in the preclinical stage of AD is currently being undertaken.
Collapse
Affiliation(s)
| | | | | | - Roy Yaari
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | | | | | | | | | |
Collapse
|
16
|
Ayton S. Ventricular enlargement caused by aducanumab. Nat Rev Neurol 2022; 18:383-384. [PMID: 35440813 DOI: 10.1038/s41582-022-00660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that currently has no cure. The aged population is growing globally, creating an urgent need for more promising therapies for this debilitating disease. Much effort has been made in recent decades, and the field is highly dynamic, with numerous trials. The main focus of these trials includes disease modification and symptomatic treatment. Some have shown beneficial outcomes, while others have shown no significant benefits. Here, we cover the outcome of recently published AD clinical trials, as well as the mechanism of action of these therapeutical agents, to re-think drug development strategies and directions for future studies.
Collapse
|
18
|
Ayton S. Brain volume loss due to donanemab. Eur J Neurol 2021; 28:e67-e68. [PMID: 34224184 DOI: 10.1111/ene.15007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
19
|
Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, Shcherbinin S, Sparks J, Sims JR, Brys M, Apostolova LG, Salloway SP, Skovronsky DM. Donanemab in Early Alzheimer's Disease. N Engl J Med 2021; 384:1691-1704. [PMID: 33720637 DOI: 10.1056/nejmoa2100708] [Citation(s) in RCA: 702] [Impact Index Per Article: 234.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND A hallmark of Alzheimer's disease is the accumulation of amyloid-β (Aβ) peptide. Donanemab, an antibody that targets a modified form of deposited Aβ, is being investigated for the treatment of early Alzheimer's disease. METHODS We conducted a phase 2 trial of donanemab in patients with early symptomatic Alzheimer's disease who had tau and amyloid deposition on positron-emission tomography (PET). Patients were randomly assigned in a 1:1 ratio to receive donanemab (700 mg for the first three doses and 1400 mg thereafter) or placebo intravenously every 4 weeks for up to 72 weeks. The primary outcome was the change from baseline in the score on the Integrated Alzheimer's Disease Rating Scale (iADRS; range, 0 to 144, with lower scores indicating greater cognitive and functional impairment) at 76 weeks. Secondary outcomes included the change in scores on the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB), the 13-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog13), the Alzheimer's Disease Cooperative Study-Instrumental Activities of Daily Living Inventory (ADCS-iADL), and the Mini-Mental State Examination (MMSE), as well as the change in the amyloid and tau burden on PET. RESULTS A total of 257 patients were enrolled; 131 were assigned to receive donanemab and 126 to receive placebo. The baseline iADRS score was 106 in both groups. The change from baseline in the iADRS score at 76 weeks was -6.86 with donanemab and -10.06 with placebo (difference, 3.20; 95% confidence interval, 0.12 to 6.27; P = 0.04). The results for most secondary outcomes showed no substantial difference. At 76 weeks, the reductions in the amyloid plaque level and the global tau load were 85.06 centiloids and 0.01 greater, respectively, with donanemab than with placebo. Amyloid-related cerebral edema or effusions (mostly asymptomatic) occurred with donanemab. CONCLUSIONS In patients with early Alzheimer's disease, donanemab resulted in a better composite score for cognition and for the ability to perform activities of daily living than placebo at 76 weeks, although results for secondary outcomes were mixed. Longer and larger trials are necessary to study the efficacy and safety of donanemab in Alzheimer's disease. (Funded by Eli Lilly; TRAILBLAZER-ALZ ClinicalTrials.gov number, NCT03367403.).
Collapse
Affiliation(s)
- Mark A Mintun
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Albert C Lo
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Cynthia Duggan Evans
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Alette M Wessels
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Paul A Ardayfio
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Scott W Andersen
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Sergey Shcherbinin
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - JonDavid Sparks
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - John R Sims
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Miroslaw Brys
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Liana G Apostolova
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Stephen P Salloway
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| | - Daniel M Skovronsky
- From Eli Lilly (M.A.M., A.C.L., C.D.E., A.M.W., P.A.A., S.W.A., S.S., J.S., J.R.S., M.B., D.M.S.) and the Departments of Neurology, of Radiology and Imaging Sciences, and of Medical and Molecular Genetics and the Indiana Alzheimer Disease Center, Indiana University School of Medicine (L.G.A.) - both in Indianapolis; and the Departments of Psychiatry and Human Behavior and of Neurology, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.P.S.)
| |
Collapse
|
20
|
Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, Lannfelt L, Bradley H, Rabe M, Koyama A, Reyderman L, Berry DA, Berry S, Gordon R, Kramer LD, Cummings JL. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther 2021; 13:80. [PMID: 33865446 PMCID: PMC8053280 DOI: 10.1186/s13195-021-00813-8] [Citation(s) in RCA: 434] [Impact Index Per Article: 144.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lecanemab (BAN2401), an IgG1 monoclonal antibody, preferentially targets soluble aggregated amyloid beta (Aβ), with activity across oligomers, protofibrils, and insoluble fibrils. BAN2401-G000-201, a randomized double-blind clinical trial, utilized a Bayesian design with response-adaptive randomization to assess 3 doses across 2 regimens of lecanemab versus placebo in early Alzheimer's disease, mild cognitive impairment due to Alzheimer's disease (AD) and mild AD dementia. METHODS BAN2401-G000-201 aimed to establish the effective dose 90% (ED90), defined as the simplest dose that achieves ≥90% of the maximum treatment effect. The primary endpoint was Bayesian analysis of 12-month clinical change on the Alzheimer's Disease Composite Score (ADCOMS) for the ED90 dose, which required an 80% probability of ≥25% clinical reduction in decline versus placebo. Key secondary endpoints included 18-month Bayesian and frequentist analyses of brain amyloid reduction using positron emission tomography; clinical decline on ADCOMS, Clinical Dementia Rating-Sum-of-Boxes (CDR-SB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog14); changes in CSF core biomarkers; and total hippocampal volume (HV) using volumetric magnetic resonance imaging. RESULTS A total of 854 randomized subjects were treated (lecanemab, 609; placebo, 245). At 12 months, the 10-mg/kg biweekly ED90 dose showed a 64% probability to be better than placebo by 25% on ADCOMS, which missed the 80% threshold for the primary outcome. At 18 months, 10-mg/kg biweekly lecanemab reduced brain amyloid (-0.306 SUVr units) while showing a drug-placebo difference in favor of active treatment by 27% and 30% on ADCOMS, 56% and 47% on ADAS-Cog14, and 33% and 26% on CDR-SB versus placebo according to Bayesian and frequentist analyses, respectively. CSF biomarkers were supportive of a treatment effect. Lecanemab was well-tolerated with 9.9% incidence of amyloid-related imaging abnormalities-edema/effusion at 10 mg/kg biweekly. CONCLUSIONS BAN2401-G000-201 did not meet the 12-month primary endpoint. However, prespecified 18-month Bayesian and frequentist analyses demonstrated reduction in brain amyloid accompanied by a consistent reduction of clinical decline across several clinical and biomarker endpoints. A phase 3 study (Clarity AD) in early Alzheimer's disease is underway. TRIAL REGISTRATION Clinical Trials.gov NCT01767311 .
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lars Lannfelt
- BioArctic AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
21
|
Cummings J. Innovative Therapeutic Development Programme for the Treatment of Early Alzheimer's Disease: Lecanemab (BAN2401). Neurology 2021. [DOI: 10.17925/usn.2021.17.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Sur C, Kost J, Scott D, Adamczuk K, Fox NC, Cummings JL, Tariot PN, Aisen PS, Vellas B, Voss T, Mahoney E, Mukai Y, Kennedy ME, Lines C, Michelson D, Egan MF. BACE inhibition causes rapid, regional, and non-progressive volume reduction in Alzheimer's disease brain. Brain 2020; 143:3816-3826. [PMID: 33253354 PMCID: PMC8453290 DOI: 10.1093/brain/awaa332] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 01/26/2023] Open
Abstract
In the phase 3 EPOCH trial (Clinicaltrials.gov; NCT01739348), treatment with the BACE inhibitor verubecestat failed to improve cognition in patients with mild-to-moderate Alzheimer's disease, but was associated with reduced hippocampal volume after 78 weeks as assessed by MRI. The aims of the present exploratory analyses were to: (i) characterize the effect of verubecestat on brain volume by evaluating the time course of volumetric MRI changes for a variety of brain regions; and (ii) understand the mechanism through which verubecestat might cause hippocampal (and other brain region) volume loss by assessing its relationship to measures of amyloid, neurodegeneration, and cognition. Participants were aged 55-85 years with probable Alzheimer's disease dementia and a Mini Mental State Examination score ≥15 and ≤26. MRIs were obtained at baseline and at Weeks 13, 26, 52 and 78 of treatment. MRIs were segmented using Freesurfer and analysed using a tensor-based morphometry method. PET amyloid data were obtained with 18F-flutemetamol (Vizamyl®) at baseline and Week 78. Standardized uptake value ratios were generated with subcortical white matter as a reference region. Neurofilament light chain in the CSF was assessed as a biomarker of neurodegeneration. Compared with placebo, verubecestat showed increased MRI brain volume loss at Week 13 with no evidence of additional loss through Week 78. The verubecestat-related volumetric MRI loss occurred predominantly in amyloid-rich brain regions. Correlations between amyloid burden at baseline and verubecestat-related volumetric MRI reductions were not significant (r = 0.05 to 0.26, P-values > 0.27). There were no significant differences between verubecestat and placebo in changes from baseline in CSF levels of neurofilament light chain at Week 78 (increases of 7.2 and 14.6 pg/ml for verubecestat versus 19.7 pg/ml for placebo, P-values ≥ 0.1). There was a moderate correlation between volumetric MRI changes and cognitive decline in all groups including placebo at Week 78 (e.g. r = -0.45 to -0.55, P < 0.001 for whole brain), but the correlations were smaller at Week 13 and significant only for the verubecestat groups (e.g. r = -0.15 and -0.11, P < 0.04 for whole brain). Our results suggest that the verubecestat-associated MRI brain volume loss is not due to generalized, progressive neurodegeneration, but may be mediated by specific effects on BACE-related amyloid processes.
Collapse
Affiliation(s)
| | - James Kost
- Merck and Co., Inc., Kenilworth, NJ, USA
| | | | | | - Nick C Fox
- Institute of Neurology and UK Dementia Research Institute, University College London, London, UK
| | - Jeffrey L Cummings
- University of Nevada Las Vegas (UNLV) School of Integrated Health Sciences, Las Vegas, NV, USA
- UNLV Department of Brain Health, Las Vegas, NV, USA
- UNLV, Chambers-Grundy Center for Transformative Neuroscience, Las Vegas, NV, USA
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Pierre N Tariot
- Banner Alzheimer’s Institute, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Paul S Aisen
- University of Southern California, San Diego, CA, USA
| | - Bruno Vellas
- Gerontopole, INSERM U 1027, Alzheimer’s Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France
| | | | | | - Yuki Mukai
- Merck and Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | |
Collapse
|
23
|
Cullen NC, Zetterberg H, Insel PS, Olsson B, Andreasson U, Blennow K, Hansson O, Mattsson-Carlgren N. Comparing progression biomarkers in clinical trials of early Alzheimer's disease. Ann Clin Transl Neurol 2020; 7:1661-1673. [PMID: 32779869 PMCID: PMC7480920 DOI: 10.1002/acn3.51158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the statistical power of plasma, imaging, and cognition biomarkers as Alzheimer’s disease (AD) clinical trial outcome measures. Methods Plasma neurofilament light, structural magnetic resonance imaging, and cognition were measured longitudinally in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) in control (amyloid PET or CSF Aβ42 negative [Aβ‐] with Clinical Dementia Rating scale [CDR] = 0; n = 330), preclinical AD (Aβ + with CDR = 0; n = 218) and mild AD (Aβ + with CDR = 0.5‐1; n = 697) individuals. A statistical power analysis was performed across biomarkers and groups based on longitudinal mixed effects modeling and using several different clinical trial designs. Results For a 30‐month trial of preclinical AD, both the temporal composite and hippocampal volumes were superior to plasma neurofilament light and cognition. For an 18‐month trial of mild AD, hippocampal volume was superior to all other biomarkers. Plasma neurofilament light became more effective with increased trial duration or sampling frequency. Imaging biomarkers were characterized by high slope and low within‐subject variability, while plasma neurofilament light and cognition were characterized by higher within‐subject variability. Interpretation MRI measures had properties that made them preferable to cognition and pNFL as outcome measures in clinical trials of early AD, regardless of cognitive status. However, pNfL and cognition can still be effective depending on inclusion criteria, sampling frequency, and response to therapy. Future trials will help to understand how sensitive pNfL and MRI are to detect downstream effects on neurodegeneration of drugs targeting amyloid and tau pathology in AD.
Collapse
Affiliation(s)
- Nicholas C Cullen
- Clinical Memory Research Unit, Department of Clincal Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Philip S Insel
- Clinical Memory Research Unit, Department of Clincal Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Psychiatry, University of California, San Francisco, CA, US
| | - Bob Olsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clincal Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clincal Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Cummings J, Feldman HH, Scheltens P. The "rights" of precision drug development for Alzheimer's disease. Alzheimers Res Ther 2019; 11:76. [PMID: 31470905 PMCID: PMC6717388 DOI: 10.1186/s13195-019-0529-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
There is a high rate of failure in Alzheimer's disease (AD) drug development with 99% of trials showing no drug-placebo difference. This low rate of success delays new treatments for patients and discourages investment in AD drug development. Studies across drug development programs in multiple disorders have identified important strategies for decreasing the risk and increasing the likelihood of success in drug development programs. These experiences provide guidance for the optimization of AD drug development. The "rights" of AD drug development include the right target, right drug, right biomarker, right participant, and right trial. The right target identifies the appropriate biologic process for an AD therapeutic intervention. The right drug must have well-understood pharmacokinetic and pharmacodynamic features, ability to penetrate the blood-brain barrier, efficacy demonstrated in animals, maximum tolerated dose established in phase I, and acceptable toxicity. The right biomarkers include participant selection biomarkers, target engagement biomarkers, biomarkers supportive of disease modification, and biomarkers for side effect monitoring. The right participant hinges on the identification of the phase of AD (preclinical, prodromal, dementia). Severity of disease and drug mechanism both have a role in defining the right participant. The right trial is a well-conducted trial with appropriate clinical and biomarker outcomes collected over an appropriate period of time, powered to detect a clinically meaningful drug-placebo difference, and anticipating variability introduced by globalization. We lack understanding of some critical aspects of disease biology and drug action that may affect the success of development programs even when the "rights" are adhered to. Attention to disciplined drug development will increase the likelihood of success, decrease the risks associated with AD drug development, enhance the ability to attract investment, and make it more likely that new therapies will become available to those with or vulnerable to the emergence of AD.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, School of Integrated Health Sciences, UNLV and Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Ave, Las Vegas, NV, 89106, USA.
| | - Howard H Feldman
- Department of Neurosciences, Alzheimer's Disease Cooperative Study, University of California San Diego, San Diego, CA, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Egan MF, Mukai Y, Voss T, Kost J, Stone J, Furtek C, Mahoney E, Cummings JL, Tariot PN, Aisen PS, Vellas B, Lines C, Michelson D. Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:68. [PMID: 31387606 PMCID: PMC6685277 DOI: 10.1186/s13195-019-0520-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/09/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Verubecestat, a BACE1 inhibitor that reduces Aβ levels in the cerebrospinal fluid of humans, was not effective in a phase 3 trial (EPOCH) of mild-to-moderate AD and was associated with adverse events. To assist in the development of BACE1 inhibitors, we report detailed safety findings from EPOCH. METHODS EPOCH was a randomized, double-blind, placebo-controlled 78-week trial evaluating verubecestat 12 mg and 40 mg in participants with mild-to-moderate AD diagnosed clinically. The trial was terminated due to futility close to its scheduled completion. Of 1957 participants who were randomized and took treatment, 652 were assigned to verubecestat 12 mg, 652 to verubecestat 40 mg, and 653 to placebo. Adverse events and relevant laboratory, vital sign, and ECG findings were assessed. RESULTS Verubecestat 12 mg and 40 mg were associated with an increase in the percentage of participants reporting adverse events versus placebo (89 and 92% vs. 82%), although relatively few participants discontinued treatment due to adverse events (8 and 9% vs. 6%). Adverse events that were increased versus placebo included falls and injuries, suicidal ideation, weight loss, sleep disturbance, rash, and hair color change. Most were mild to moderate in severity. Treatment differences in suicidal ideation emerged within the first 3 months but did not appear to increase after 6 months. In contrast, treatment differences in falls and injuries continued to increase over time. CONCLUSIONS Verubecestat was associated with increased risk for several types of adverse events. Falls and injuries were notable for progressive increases over time. While the mechanisms underlying the increased adverse events are unclear, they may be due to BACE inhibition and should be considered in future clinical development programs of BACE1 inhibitors. TRIAL REGISTRATION ClinicalTrials.gov NCT01739348 , registered on 29 November 2012.
Collapse
Affiliation(s)
- Michael F Egan
- Merck & Co., Inc., Kenilworth, NJ, USA. .,Merck & Co., Inc., UG 4C-06, P.O. Box 1000, North Wales, PA, 19454-1099, USA.
| | | | | | | | | | | | | | - Jeffrey L Cummings
- University of Nevada Las Vegas Department of Brain Health, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | - Paul S Aisen
- University of Southern California, San Diego, CA, USA
| | - Bruno Vellas
- Gerontopole, INSERM U 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France
| | | | | |
Collapse
|
26
|
The amyloid cascade and Alzheimer's disease therapeutics: theory versus observation. J Transl Med 2019; 99:958-970. [PMID: 30760863 DOI: 10.1038/s41374-019-0231-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
The identification of amyloid-β precursor protein (APP) pathogenic mutations in familial early onset Alzheimer's disease (AD), along with knowledge that amyloid-β (Aβ) was the principle protein component of senile plaques, led to the establishment of the amyloid cascade hypothesis. Down syndrome substantiated the hypothesis, given an extra copy of the APP gene and invariable AD pathology hallmarks that occur by middle age. An abundance of support for the amyloid cascade hypothesis followed. Prion-like protein misfolding and non-Mendelian transmission of neurotoxicity are among recent areas of investigation. Aβ-targeted clinical trials have been disappointing, with negative results attributed to inadequacies in patient selection, challenges in pharmacology, and incomplete knowledge of the most appropriate target. There is evidence, however, that proof of concept has been achieved, i.e., clearance of Aβ during life, but with no significant changes in cognitive trajectory in AD. Whether the time, effort, and expense of Aβ-targeted therapy will prove valuable will be determined over time, as Aβ-centered clinical trials continue to dominate therapeutic strategies. It seems reasonable to hypothesize that the amyloid cascade is intimately involved in AD, in parallel with disease pathogenesis, but that removal of toxic Aβ is insufficient for an effective disease modification.
Collapse
|
27
|
Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, Blair NF, Craufurd D, Priller J, Rickards H, Rosser A, Kordasiewicz HB, Czech C, Swayze EE, Norris DA, Baumann T, Gerlach I, Schobel SA, Paz E, Smith AV, Bennett CF, Lane RM. Targeting Huntingtin Expression in Patients with Huntington's Disease. N Engl J Med 2019; 380:2307-2316. [PMID: 31059641 DOI: 10.1056/nejmoa1900907] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Huntington's disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in HTT, resulting in a mutant huntingtin protein. IONIS-HTTRx (hereafter, HTTRx) is an antisense oligonucleotide designed to inhibit HTT messenger RNA and thereby reduce concentrations of mutant huntingtin. METHODS We conducted a randomized, double-blind, multiple-ascending-dose, phase 1-2a trial involving adults with early Huntington's disease. Patients were randomly assigned in a 3:1 ratio to receive HTTRx or placebo as a bolus intrathecal administration every 4 weeks for four doses. Dose selection was guided by a preclinical model in mice and nonhuman primates that related dose level to reduction in the concentration of huntingtin. The primary end point was safety. The secondary end point was HTTRx pharmacokinetics in cerebrospinal fluid (CSF). Prespecified exploratory end points included the concentration of mutant huntingtin in CSF. RESULTS Of the 46 patients who were enrolled in the trial, 34 were randomly assigned to receive HTTRx (at ascending dose levels of 10 to 120 mg) and 12 were randomly assigned to receive placebo. Each patient received all four doses and completed the trial. Adverse events, all of grade 1 or 2, were reported in 98% of the patients. No serious adverse events were seen in HTTRx-treated patients. There were no clinically relevant adverse changes in laboratory variables. Predose (trough) concentrations of HTTRx in CSF showed dose dependence up to doses of 60 mg. HTTRx treatment resulted in a dose-dependent reduction in the concentration of mutant huntingtin in CSF (mean percentage change from baseline, 10% in the placebo group and -20%, -25%, -28%, -42%, and -38% in the HTTRx 10-mg, 30-mg, 60-mg, 90-mg, and 120-mg dose groups, respectively). CONCLUSIONS Intrathecal administration of HTTRx to patients with early Huntington's disease was not accompanied by serious adverse events. We observed dose-dependent reductions in concentrations of mutant huntingtin. (Funded by Ionis Pharmaceuticals and F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02519036.).
Collapse
Affiliation(s)
- Sarah J Tabrizi
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Blair R Leavitt
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - G Bernhard Landwehrmeyer
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Edward J Wild
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Carsten Saft
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Roger A Barker
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Nick F Blair
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - David Craufurd
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Josef Priller
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Hugh Rickards
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Anne Rosser
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Holly B Kordasiewicz
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Christian Czech
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Eric E Swayze
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Daniel A Norris
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Tiffany Baumann
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Irene Gerlach
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Scott A Schobel
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Erika Paz
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Anne V Smith
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - C Frank Bennett
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| | - Roger M Lane
- From University College London (UCL) Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, and the U.K. Dementia Research Institute at UCL, London (S.J.T., E.J.W.), the Department of Clinical Neuroscience, Addenbrooke's Hospital, University of Cambridge, Cambridge (R.A.B., N.F.B.), Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, and the Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester (D.C.), the University of Edinburgh and the U.K. Dementia Research Institute, Edinburgh (J.P.), the Institute of Clinical Sciences, College of Medical and Dental Sciences, University Hospital Birmingham, Birmingham (H.R.), and the Cardiff University Brain Repair Group, Brain Repair and Intracranial Neurotherapeutics Unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff (A.R.) - all in the United Kingdom; the Centre for Huntington's Disease, Department of Medical Genetics, and the Division of Neurology, Department of Medicine, University of British Columbia, and the Centre for Molecular Medicine and Therapeutics, B.C. Children's Hospital, Vancouver, Canada (B.R.L.); the Department of Neurology, Ulm University, Huntington's Disease Centre, Ulm (G.B.L.), the Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr University Bochum, St. Josef-Hospital, Bochum (C.S.), and the Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin (J.P.) - all in Germany; Ionis Pharmaceuticals, Carlsbad, CA (H.B.K., E.E.S., D.A.N., T.B., E.P., A.V.S., C.F.B., R.M.L.); and F. Hoffmann-La Roche, Basel, Switzerland (C.C., I.G., S.A.S.)
| |
Collapse
|
28
|
Cummings J. The National Institute on Aging-Alzheimer's Association Framework on Alzheimer's disease: Application to clinical trials. Alzheimers Dement 2019; 15:172-178. [PMID: 29936146 PMCID: PMC6417790 DOI: 10.1016/j.jalz.2018.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The National Institute on Aging-Alzheimer's Association Research Framework on Alzheimer's disease (AD) represents an important advance in the biological characterization of the AD spectrum. METHODS The National Institute on Aging-Alzheimer's Association Framework is considered as it applies to clinical trials. RESULTS Using the combination of amyloid (A), tau (T), and neurodegeneration (N) biomarkers, the Framework provides a means of defining the state of patients with regard to Alzheimer pathologic change. The Framework is relevant to clinical trials of disease-modifying agents, allowing participants to be characterized biologically at baseline. The ATN Framework can also inform trial outcomes. The preclinical phase of the disease after amyloid deposition is defined by A+T-N-, and the transition to prodromal disease and dementia is characterized by the addition of T and N. Most symptomatic patients in clinical trials are in the class of A+T+N- and A+T+N+. DISCUSSION The National Institute on Aging-Alzheimer's Association Framework on AD represents progress in providing biomarker profiles of participants in the AD spectrum that can be used to help design clinical trials.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
| |
Collapse
|
29
|
Nave S, Doody RS, Boada M, Grimmer T, Savola JM, Delmar P, Pauly-Evers M, Nikolcheva T, Czech C, Borroni E, Ricci B, Dukart J, Mannino M, Carey T, Moran E, Gilaberte I, Muelhardt NM, Gerlach I, Santarelli L, Ostrowitzki S, Fontoura P. Sembragiline in Moderate Alzheimer's Disease: Results of a Randomized, Double-Blind, Placebo-Controlled Phase II Trial (MAyflOwer RoAD). J Alzheimers Dis 2018; 58:1217-1228. [PMID: 28550255 PMCID: PMC5523913 DOI: 10.3233/jad-161309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Sembragiline is a potent, selective, long-acting, and reversible MAO-B inhibitor developed as a potential treatment for Alzheimer’s disease (AD). Objective: To evaluate the safety, tolerability, and efficacy of sembragiline in patients with moderate AD. Methods: In this Phase II study (NCT01677754), 542 patients with moderate dementia (MMSE 13–20) on background acetylcholinesterase inhibitors with/without memantine were randomized (1:1:1) to sembragiline 1 mg, 5 mg, or placebo once daily orally for 52 weeks. Results: No differences between treated groups and placebo in adverse events or in study completion. The primary endpoint, change from baseline in ADAS-Cog11, was not met. At Week 52, the difference between sembragiline and placebo in ADAS-Cog11 change from baseline was – 0.15 (p = 0.865) and 0.90 (p = 0.312) for 1 and 5 mg groups, respectively. Relative to placebo at Week 52 (but not at prior assessment times), the 1 mg and 5 mg sembragiline groups showed differences in ADCS-ADL of 2.64 (p = 0.051) and 1.89 (p = 0.160), respectively. A treatment effect in neuropsychiatric symptoms (as assessed by the difference between sembragiline and placebo on BEHAVE-AD-FW) was also seen at Week 52 only: – 2.80 (p = 0.014; 1 mg) and – 2.64 (p = 0.019; 5 mg), respectively. A post hoc subgroup analysis revealed greater treatment effects on behavior and functioning in patients with more severe baseline behavioral symptoms (above the median). Conclusions: This study showed that sembragiline was well-tolerated in patients with moderate AD. The study missed its primary and secondary endpoints. Post hoc analyses suggested potential effect on neuropsychiatric symptoms and functioning in more behaviorally impaired study population at baseline.
Collapse
Affiliation(s)
- Stephane Nave
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Rachelle S Doody
- Department of Neurology, Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, TX, USA
| | - Mercè Boada
- Memory Clinic ofFundació ACE, Institut Catalá de Neurociències Aplicades, Barcelona, Spain
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Juha-Matti Savola
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Paul Delmar
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Meike Pauly-Evers
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Tania Nikolcheva
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Christian Czech
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Edilio Borroni
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Benedicte Ricci
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Juergen Dukart
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Marie Mannino
- RocheSafety Risk Management, Licensing & Early Development, RocheInnovation Center, NY, USA
| | - Tracie Carey
- Roche Product Development, Roche Innovation Center, NY, USA
| | - Emma Moran
- Roche Products Limited, Roche Innovation Center Welwyn, Welwyn Garden City, UK
| | - Inma Gilaberte
- Roche Products Limited, Roche Innovation Center Welwyn, Welwyn Garden City, UK
| | - Nicoletta Milani Muelhardt
- Roche Product Development Neuroscience, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Switzerland
| | - Irene Gerlach
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Luca Santarelli
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Susanne Ostrowitzki
- Genentech Inc., Product Development Neuroscience, South San Francisco, CA, USA
| | - Paulo Fontoura
- Roche Product Development Neuroscience, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Switzerland
| |
Collapse
|
30
|
Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, Sur C, Mukai Y, Voss T, Furtek C, Mahoney E, Harper Mozley L, Vandenberghe R, Mo Y, Michelson D. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer's Disease. N Engl J Med 2018; 378:1691-1703. [PMID: 29719179 PMCID: PMC6776074 DOI: 10.1056/nejmoa1706441] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease is characterized by the deposition of amyloid-beta (Aβ) plaques in the brain. Aβ is produced from the sequential cleavage of amyloid precursor protein by β-site amyloid precursor protein-cleaving enzyme 1 (BACE-1) followed by γ-secretase. Verubecestat is an oral BACE-1 inhibitor that reduces the Aβ level in the cerebrospinal fluid of patients with Alzheimer's disease. METHODS We conducted a randomized, double-blind, placebo-controlled, 78-week trial to evaluate verubecestat at doses of 12 mg and 40 mg per day, as compared with placebo, in patients who had a clinical diagnosis of mild-to-moderate Alzheimer's disease. The coprimary outcomes were the change from baseline to week 78 in the score on the cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog; scores range from 0 to 70, with higher scores indicating worse dementia) and in the score on the Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory scale (ADCS-ADL; scores range from 0 to 78, with lower scores indicating worse function). RESULTS A total of 1958 patients underwent randomization; 653 were randomly assigned to receive verubecestat at a dose of 12 mg per day (the 12-mg group), 652 to receive verubecestat at a dose of 40 mg per day (the 40-mg group), and 653 to receive matching placebo. The trial was terminated early for futility 50 months after onset, which was within 5 months before its scheduled completion, and after enrollment of the planned 1958 patients was complete. The estimated mean change from baseline to week 78 in the ADAS-cog score was 7.9 in the 12-mg group, 8.0 in the 40-mg group, and 7.7 in the placebo group (P=0.63 for the comparison between the 12-mg group and the placebo group and P=0.46 for the comparison between the 40-mg group and the placebo group). The estimated mean change from baseline to week 78 in the ADCS-ADL score was -8.4 in the 12-mg group, -8.2 in the 40-mg group, and -8.9 in the placebo group (P=0.49 for the comparison between the 12-mg group and the placebo group and P=0.32 for the comparison between the 40-mg group and the placebo group). Adverse events, including rash, falls and injuries, sleep disturbance, suicidal ideation, weight loss, and hair-color change, were more common in the verubecestat groups than in the placebo group. CONCLUSIONS Verubecestat did not reduce cognitive or functional decline in patients with mild-to-moderate Alzheimer's disease and was associated with treatment-related adverse events. (Funded by Merck; ClinicalTrials.gov number, NCT01739348 .).
Collapse
Affiliation(s)
- Michael F Egan
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - James Kost
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Pierre N Tariot
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Paul S Aisen
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Jeffrey L Cummings
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Bruno Vellas
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Cyrille Sur
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Yuki Mukai
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Tiffini Voss
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Christine Furtek
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Erin Mahoney
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Lyn Harper Mozley
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Rik Vandenberghe
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - Yi Mo
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| | - David Michelson
- From Merck Research Laboratories, Merck, Kenilworth, NJ (M.F.E., J.K., C.S., Y. Mukai, T.V., C.F., E.M., L.H.M., Y. Mo, D.M.); Banner Alzheimer's Institute, Phoenix, AZ (P.N.T.); University of Southern California, San Diego (P.S.A.); Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (J.L.C.); Gerontopole, INSERM Unité 1027, Alzheimer's Disease Research and Clinical Center, Toulouse University Hospital, Toulouse, France (B.V.); and Leuven Institute of Neuroscience and Disease, Alzheimer Research Center, and the Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven, and Neurology, University Hospitals - both in Leuven, Belgium (R.V.)
| |
Collapse
|
31
|
Battaglini M, Jenkinson M, De Stefano N. SIENA-XL for improving the assessment of gray and white matter volume changes on brain MRI. Hum Brain Mapp 2018; 39:1063-1077. [PMID: 29222814 PMCID: PMC6866496 DOI: 10.1002/hbm.23828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/10/2017] [Accepted: 09/15/2017] [Indexed: 01/18/2023] Open
Abstract
In this article, SIENA-XL, a new segmentation-based longitudinal pipeline is introduced, for: (i) increasing the precision of longitudinal volume change estimation for white (WM) and gray (GM) matter separately, compared with cross-sectional segmentation methods such as SIENAX; and (ii) avoiding potential biases in registration-based methods when Jacobians are used, with a smoothing extent larger than spatial scale between tissue-interfaces, which is where atrophy usually occurs. SIENA-XL implements a new brain extraction procedure and a multi-time-point intensity equalization step before performing the final segmentation that also includes separate segmentation of deep GM structures by using FMRIB's Integrated Registration and Segmentation Tool. The detection of GM and WM volume changes with SIENA-XL was evaluated using different healthy control (HC) and multiple sclerosis (MS) MRI datasets and compared with the traditional SIENAX and two Jacobian-based approaches, SPM12 and SIENAX-JI (a version of SIENAX including Jacobian integration - JI). In scan-rescan data from HCs, SIENA-XL showed: (i) a significant decrease in error, of 50-70% when compared with SIENAX; (ii) no significant differences in error when compared with SIENAX-JI and SPM12 in a scan-rescan HC dataset that included repositioning. When tested in a HC dataset with scan-rescan both at baseline and after 1 year of follow-up, SIENA-XL showed: (i) significantly higher precision (P < 0.01) than SIENAX; (ii) no significant differences to SIENAX-JI and SPM12. Finally, in a dataset of 79 MS patients with a 2 years follow-up, SIENA-XL showed a substantial reduction of sample size, by comparison with SIENAX, SIENAX-JI, and SPM12, for detecting treatment effects of 25, 30, and 50%. Hum Brain Mapp 39:1063-1077, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco Battaglini
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaItaly
| | - Mark Jenkinson
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaItaly
- Department of Clinical Neurology, University of OxfordOxford University Centre for Functional MRI of the Brain (FMRIB)United Kingdom
| | - Nicola De Stefano
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaItaly
| | | |
Collapse
|
32
|
Liu E, Wang D, Sperling R, Salloway S, Fox NC, Blennow K, Scheltens P, Schmidt ME, Streffer J, Novak G, Einstein S, Booth K, Ketter N, Brashear HR. Biomarker pattern of ARIA-E participants in phase 3 randomized clinical trials with bapineuzumab. Neurology 2018; 90:e877-e886. [PMID: 29429971 DOI: 10.1212/wnl.0000000000005060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/21/2017] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To evaluate whether amyloid-related imaging abnormalities with edema/effusion (ARIA-E) observed in bapineuzumab clinical trials was associated with specific biomarker patterns. METHODS Bapineuzumab, an anti-β-amyloid monoclonal antibody, was evaluated in patients with mild to moderate Alzheimer disease. Amyloid PET imaging, CSF biomarkers, or volumetric MRI (vMRI) were assessed. RESULTS A total of 1,512 participants underwent one or more biomarker assessments; 154 developed incident ARIA-E. No differences were observed at baseline between ARIA-E and non-ARIA-E participants in brain amyloid burden by PET, the majority of vMRI measures, or CSF biomarkers, with the exception of lower baseline CSF Aβ42 in APOE ε4 noncarrier ARIA-E vs non-ARIA-E groups (bapineuzumab non-ARIA-E p = 0.027; placebo non-ARIA-E p = 0.012). At week 71, bapineuzumab-treated participants with ARIA-E vs non-ARIA-E showed greater reduction in brain amyloid PET, greater reductions in CSF phosphorylated tau (p-tau) (all comparisons p < 0.01), and total tau (t-tau) (all comparisons p < 0.025), and greater hippocampal volume reduction and ventricular enlargement (all p < 0.05). Greater reduction in CSF Aβ40 concentrations was observed for ARIA-E versus both non-ARIA-E groups (bapineuzumab/placebo non-ARIA-E p = 0.015/0.049). No group differences were observed at week 71 for changes in whole brain volume or CSF Aβ42. CONCLUSIONS Baseline biomarkers largely do not predict risk for developing ARIA-E. ARIA-E was associated with significant longitudinal changes in several biomarkers, with larger reductions in amyloid PET and CSF p-tau and t-tau concentrations, and paradoxically greater hippocampal volume reduction and ventricular enlargement, suggesting that ARIA-E in bapineuzumab-treated cases may be related to increased Aβ efflux from the brain and affecting downstream pathogenic processes.
Collapse
Affiliation(s)
- Enchi Liu
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA.
| | - Dai Wang
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Reisa Sperling
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Stephen Salloway
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Nick C Fox
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Kaj Blennow
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Philip Scheltens
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Mark E Schmidt
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Johannes Streffer
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Gerald Novak
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Steve Einstein
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Kevin Booth
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - Nzeera Ketter
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | - H Robert Brashear
- From Janssen Research & Development, LLC (E.L.), La Jolla, CA; Janssen Research & Development, LLC (D.W., G.N., S.E.), Titusville, NJ; Brigham and Women's Hospital (R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; Brown University (S.S.), Providence, RI; UCL Institute of Neurology (N.C.F.), London, UK; Clinical Neurochemistry Lab, Department of Neuroscience and Physiology (K.B.), The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; VUMC (P.S.), Amsterdam, the Netherlands; Janssen Pharmaceuticals (M.E.S., J.S.), NV, Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM) (J.S.), Institute Born-Bunge, University of Antwerp, Belgium; Pfizer, Inc. (K.B.), Collegeville, PA; and Janssen Research & Development, LLC (N.K., H.R.B.), Fremont, CA
| | | |
Collapse
|
33
|
Cummings J. Disease modification and Neuroprotection in neurodegenerative disorders. Transl Neurodegener 2017; 6:25. [PMID: 29021896 PMCID: PMC5613313 DOI: 10.1186/s40035-017-0096-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
Background Disease modifying therapies (DMTs) are urgently needed for neurodegenerative diseases (NDD) such as Alzheimer’s disease (AD) and many other disorders characterized by protein aggregation and neurodegeneration. Despite advances in understanding the neurobiology of NDD, there are no approved DMTs. Discussion Defining disease-modification is critical to drug-development programs. A DMT is an intervention that produces an enduring change in the trajectory of clinical decline of an NDD by impacting the disease processes leading to nerve cell death. A DMT is neuroprotective, and neuroprotection will result in disease modification. Disease modification can be demonstrated in clinical trials by a drug-placebo difference in clinical outcomes supported by a drug-placebo difference on biomarkers reflective of the fundamental pathophysiology of the NDD. Alternatively, disease modification can be supported by findings on a staggered start or delayed withdrawal clinical trial design. Collecting multiple biomarkers is necessary to support a comprehensive view of disease modification. Conclusion Disease modification is established by demonstrating an enduring change in the clinical trajectory of an NDD based on intervention in the fundamental pathophysiology of the disease leading to nerve cell death. Supporting data are collected in clinical trials. Effectively defining a DMT will assist in NDD drug development programs.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Ave, Las Vegas, NV 89106 USA
| |
Collapse
|
34
|
Wang Y, Yan T, Lu H, Yin W, Lin B, Fan W, Zhang X, Fernandez-Funez P. Lessons from Anti-Amyloid-β Immunotherapies in Alzheimer Disease: Aiming at a Moving Target. NEURODEGENER DIS 2017; 17:242-250. [DOI: 10.1159/000478741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
|
35
|
Landen JW, Andreasen N, Cronenberger CL, Schwartz PF, Börjesson-Hanson A, Östlund H, Sattler CA, Binneman B, Bednar MM. Ponezumab in mild-to-moderate Alzheimer's disease: Randomized phase II PET-PIB study. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:393-401. [PMID: 29067345 PMCID: PMC5651442 DOI: 10.1016/j.trci.2017.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The safety, pharmacokinetics, and effect on peripheral and central amyloid β (Aβ) of multiple doses of ponezumab, an anti-Aβ monoclonal antibody, were characterized in subjects with mild-to-moderate Alzheimer's disease treated for 1 year. METHODS Subjects were aged ≥50 years with Mini-Mental State Examination scores 16 to 26. Cohort Q was randomized to ponezumab 10 mg/kg (n = 12) or placebo (n = 6) quarterly. Cohort M was randomized to a loading dose of ponezumab 10 mg/kg or placebo, followed by monthly ponezumab 7.5 mg/kg (n = 12) or placebo (n = 6), respectively. RESULTS Ponezumab was generally well tolerated. Plasma concentrations increased dose dependently, but cerebrospinal fluid (CSF) penetration was low. Plasma Aβ increased dose dependently with ponezumab, but CSF biomarkers, brain amyloid burden, cognition, and function were not affected. CONCLUSIONS Both ponezumab dosing schedules were generally safe and well tolerated but did not alter CSF biomarkers, brain amyloid burden, or clinical outcomes.
Collapse
|
36
|
Cummings J, Fox N. Defining Disease Modifying Therapy for Alzheimer's Disease. JPAD-JOURNAL OF PREVENTION OF ALZHEIMERS DISEASE 2017; 4:109-115. [PMID: 29071250 DOI: 10.14283/jpad.2017.12] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disease-modifying therapies (DMTs) are urgently needed to treat the growing number of individuals with Alzheimer's disease (AD) or at immanent risk for AD. A definition of DMT is required to facilitate the process of DMT drug development. PROCESS This is a review of the state of the science with regard to definition and development of DMTs. RESULTS A DMT is as an intervention that produces an enduring change in the clinical progression of AD by interfering in the underlying pathophysiological mechanisms of the disease process that lead to cell death. Demonstration of DMT efficacy is garnered through clinical trial designs and biomarkers. Evidence of disease modification in the drug development process is based on trial designs such as staggered start and delayed withdrawal showing an enduring effect on disease course or on combined clinical outcomes and correlated biomarker evidence of an effect on the underlying pathophysiological processes of the disease. Analytic approaches such as showing change in slope of cognitive decline, increasing drug-placebo difference over time, and delay of disease milestones are not conclusive by themselves but support the presence of a disease modifying effect. Neuroprotection is a related concept whose demonstration depends on substantiating disease modification. No single type of evidence in itself is sufficient to prove disease modification - consistency, robustness, and variety of sources of data will all contribute to convincing stakeholders that an agent is a DMT. CONCLUSION DMT is defined by its enduring effect on processes leading to cell death. A variety of types of data can be used to support the hypothesis that disease modification has occurred.
Collapse
Affiliation(s)
- J Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - N Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
37
|
Hara H, Ono F, Nakamura S, Matsumoto SE, Jin H, Hattori N, Tabira T. An Oral Aβ Vaccine Using a Recombinant Adeno-Associated Virus Vector in Aged Monkeys: Reduction in Plaque Amyloid and Increase in Aβ Oligomers. J Alzheimers Dis 2016; 54:1047-1059. [DOI: 10.3233/jad-160514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hideo Hara
- National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Morioka, Obu, Aichi, Japan
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Fumiko Ono
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
- Faculty of Risk and Crisis Management, Chiba Institute of Science, Shiomi, Choshi, Chiba, Japan
| | - Shinichiro Nakamura
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
- Shiga University of Medical Science, Research Center for Animal Life Science, Seta-Tsukinowa, Otsu, Shiga, Japan
| | - Shin-ei Matsumoto
- National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Morioka, Obu, Aichi, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Haifeng Jin
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Tabira
- National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Morioka, Obu, Aichi, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|