1
|
Oezen G, Kraus L, Schentarra EM, Bolten JS, Huwyler J, Fricker G. Aluminum and ABC transporter activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104451. [PMID: 38648870 DOI: 10.1016/j.etap.2024.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Aluminum is the third most common element on Earth´s crust and despite its wide use in our workaday life it has been associated with several health risks after overexposure. In the present study the impact of aluminum salts upon ABC transporter activity was studied in the P-GP-expressing human blood-brain barrier cell line hCMEC/D3, in MDCKII cells overexpressing BCRP and MRP2, respectively, and in freshly isolated, functionally intact kidney tubules from Atlantic killifish (Fundulus heteroclitus), which express the analog ABC transporters, P-gp, Bcrp and Mrp2. In contrast to previous findings with heavy metals salts (cadmium(II) chloride or mercury(II) chloride), which have a strong inhibitory effect on ABC transporter activity, or zinc(II) chloride and sodium arsenite, which have a stimulatory effect upon ABC transport function, the results indicate no modulatory effect of aluminum salts on the efflux activity of the human ABC transporters P-GP, BCRP and MRP2 nor on the analog transporters P-gp, Bcrp and Mrp2.
Collapse
Affiliation(s)
- Goezde Oezen
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Lisa Kraus
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Eva-Maria Schentarra
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Jan Stephan Bolten
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States; Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Joerg Huwyler
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States; Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States.
| |
Collapse
|
2
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
27-Hydroxycholesterol-Induced Dysregulation of Cholesterol Metabolism Impairs Learning and Memory Ability in ApoE ε4 Transgenic Mice. Int J Mol Sci 2022; 23:ijms231911639. [PMID: 36232940 PMCID: PMC9569856 DOI: 10.3390/ijms231911639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulated brain cholesterol metabolism is one of the characteristics of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) is a cholesterol metabolite that plays an essential role in regulating cholesterol metabolism and it is suggested that it contributes to AD-related cognitive deficits. However, the link between 27-OHC and cholesterol homeostasis, and how this relationship relates to AD pathogenesis, remain elusive. Here, 12-month-old ApoE ε4 transgenic mice were injected with saline, 27-OHC, 27-OHC synthetase inhibitor (anastrozole, ANS), and 27-OHC+ANS for 21 consecutive days. C57BL/6J mice injected with saline were used as wild-type controls. The indicators of cholesterol metabolism, synaptic structure, amyloid β 1-42 (Aβ1-42), and learning and memory abilities were measured. Compared with the wild-type mice, ApoE ε4 mice had poor memory and dysregulated cholesterol metabolism. Additionally, damaged brain tissue and synaptic structure, cognitive decline, and higher Aβ1-42 levels were observed in the 27-OHC group. Moreover, cholesterol transport proteins such as ATP-binding cassette transporter A1 (ABCA1), apolipoprotein E (ApoE), low-density lipoprotein receptor (LDLR), and low-density lipoprotein receptor-related protein1 (LRP1) were up-regulated in the cortex after the 27-OHC treatment. The levels of cholesterol metabolism-related indicators in the hippocampus were not consistent with those in the cortex. Additionally, higher serum apolipoprotein A1 (ApoA1) levels and lower serum ApoE levels were observed in the 27-OHC group. Notably, ANS partially reversed the effects of 27-OHC. In conclusion, the altered cholesterol metabolism induced by 27-OHC was involved in Aβ1-42 deposition and abnormalities in both the brain tissue and synaptic structure, ultimately leading to memory loss in the ApoE ε4 transgenic mice.
Collapse
|
4
|
Weiss C, Bertolino N, Procissi D, Disterhoft JF. Brain activity studied with magnetic resonance imaging in awake rabbits. FRONTIERS IN NEUROIMAGING 2022; 1:965529. [PMID: 37555136 PMCID: PMC10406271 DOI: 10.3389/fnimg.2022.965529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 08/10/2023]
Abstract
We reviewed fMRI experiments from our previous work in conscious rabbits, an experimental preparation that is advantageous for measuring brain activation that is free of anesthetic modulation and which can address questions in a variety of areas in sensory, cognitive, and pharmacological neuroscience research. Rabbits do not struggle or move for several hours while sitting with their heads restrained inside the horizontal bore of a magnet. This greatly reduces movement artifacts in magnetic resonance (MR) images in comparison to other experimental animals such as rodents, cats, and monkeys. We have been able to acquire high-resolution anatomic as well as functional images that are free of movement artifacts during several hours of restraint. Results from conscious rabbit fMRI studies with whisker stimulation are provided to illustrate the feasibility of this conscious animal model for functional MRI and the reproducibility of data gained with it.
Collapse
Affiliation(s)
- Craig Weiss
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|
5
|
Gu L, Yu J, He Y, Fan Y, Sheng J. Blood copper excess is associated with mild cognitive impairment in elderly Chinese. Aging Clin Exp Res 2022; 34:1007-1019. [PMID: 35043280 DOI: 10.1007/s40520-021-02034-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Copper is associated with mild cognitive impairment (MCI). However, there is a lack of relevant population studies with large sample sizes. AIMS This study used baseline data from a cohort study to determine the distribution characteristics of MCI in the elderly and to estimate the association between whole blood copper concentrations and MCI. METHODS MCI status was screened by the Mini-Mental State Examination (MMSE) scale and Activities of Daily Living (ADL) scale. The concentration of copper in whole blood was determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). RESULTS A total of 1057 subjects with an average age of 71.82 ± 6.45 years were included in this study. There were 215 patients with MCI, and the prevalence of MCI was 20.34%. After adjusting for general demographic variables, logistic regression analysis showed that the risk of MCI in the elderly with high copper level was 1.354 times higher than that in the elderly with low copper level (OR 1.354, 95% CI 1.047-1.983, P = 0.034). CONCLUSION In this study, it was found that the prevalence of MCI was different in gender, age, education level and other aspects, and a higher copper level in the elderly was significantly related to the occurrence of MCI. The association was stronger in older adults and men.
Collapse
|
6
|
Wang D. Tumor Necrosis Factor-Alpha Alters Electrophysiological Properties of Rabbit Hippocampal Neurons. J Alzheimers Dis 2020; 68:1257-1271. [PMID: 30909246 DOI: 10.3233/jad-190043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown tumor necrosis factor-alpha (TNF-α) may impact neurodegeneration in Alzheimer's disease (AD) by regulating amyloid-β and tau pathogenesis. However, it is unclear whether TNF-α has a role in a cholesterol-fed rabbit model of AD or TNF-α affects the electrophysiological properties of rabbit hippocampus. This study was designed to investigate whether long-term feeding of cholesterol diet known to induce AD pathology regulates TNF-α expression in the hippocampus and whether TNF-α would modulate electrophysiological properties of rabbit hippocampal CA1 neurons. TNF-α ELISA showed dietary cholesterol increased hippocampal TNF-α expression in a dose-dependent manner. Whole-cell recordings revealed TNF-α altered the membrane properties of rabbit hippocampal CA1 neurons, which was characterized by a decrease in after-hyperpolarization amplitudes; Field potential recordings showed TNF-α inhibited long-term potentiation but did not influence presynaptic function. Interestingly, TNF-α did not significantly affect the after-hyperpolarization amplitudes of hippocampal CA1 neurons from cholesterol fed rabbits compared to normal chow fed rabbits. In conclusion, dietary cholesterol generated an in vivo model of chronic TNF-α elevation and TNF-α may underlie the learning and memory changes previously seen in the rabbit model of AD by acting as a bridge between dietary cholesterol and brain function and directly modulating the electrophysiological properties of hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA.,Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
7
|
Foidl BM, Humpel C. Chronic treatment with five vascular risk factors causes cerebral amyloid angiopathy but no Alzheimer pathology in C57BL6 mice. Brain Behav Immun 2019; 78:52-64. [PMID: 30664922 DOI: 10.1016/j.bbi.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/12/2019] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most common form of dementia coming along with cerebral amyloid angiopathy (CAA) in more than 70% of all cases. However, CAA occurs also in pure form without AD pathology. Vascular life style risk factors such as obesity, hypertension, hypercholesterolemia, diabetes, stress or an old age play an important role in the progression of CAA. So far, no animal model for sporadic CAA has been reported, thus the aim of the present study was to create and characterize a new mouse model for sporadic CAA by treatment with different vascular risk factors. Healthy C57BL6 mice were treated with lifestyle vascular risk factors for 35 or 56 weeks: lipopolysaccharide, social stress, streptozotozin, high cholesterol diet and copper in the drinking water. Four behavioral tests (black-white box, classical maze, cheeseboard maze and plus-maze discriminative avoidance task) showed impaired learning, memory and executive functions as well as anxiety with increased age. The treated animals exhibited increased plasma levels of cortisol, insulin, interleukin-1ß, glucose and cholesterol, confirming the effectiveness of the treatment. Confocal microscopy analysis displayed severe vessel damage already after 35 weeks of treatment. IgG positive staining points to a severe blood-brain barrier (BBB) disruption and furthermore, cerebral bleedings were observed in a much higher amount in the treatment group. Importantly, inclusions of beta-amyloid in the vessels indicated the development of CAA, but no deposition of beta-amyloid plaques and tau pathology in the brains were seen. Taken together, we characterized a novel sporadic CAA mouse model, which offers a strategy to study the progression of the disease and therapeutic and diagnostic interventions.
Collapse
Affiliation(s)
- Bettina M Foidl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
8
|
Hsu HW, Bondy SC, Kitazawa M. Environmental and Dietary Exposure to Copper and Its Cellular Mechanisms Linking to Alzheimer's Disease. Toxicol Sci 2019; 163:338-345. [PMID: 29409005 DOI: 10.1093/toxsci/kfy025] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Metals are commonly found in the environment, household, and workplaces in various forms, and a significant segment of the population is routinely exposed to the trace amount of metals from variety of sources. Exposure to metals, such as aluminum, lead, iron, and copper, from environment has long been debated as a potential environmental risk factor for Alzheimer's disease (AD) for decades, yet results from in vitro, in vivo, and human population remain controversial. In the case of copper, the neurotoxic mechanism of action was classically viewed as its strong affinity to amyloid-beta (Aβ) to help its aggregation and increase oxidative stress via Fenton reaction. Thus, it has been thought that accumulation of copper mediates neurotoxicity, and removing it from the brain prevents or reverse Aβ plaque burden. Recent evidence, however, suggests dyshomeostasis of copper and its valency in the body, instead of the accumulation and interaction with Aβ, are major determinants of its beneficial effects as an essential metal or its neurotoxic counterpart. This notion is also supported by the fact that genetic loss-of-function mutations on copper transporters lead to severe neurological symptoms. Along with its altered distribution, recent studies have also proposed novel mechanisms of copper neurotoxicity mediated by nonneuronal cell lineages in the brain, such as capillary endothelial cells, leading to development of AD neuropathology. This review covers recent findings of multifactorial toxic mechanisms of copper and discusses the risk of environmental exposure as a potential factor in accounting for the variability of AD incidence.
Collapse
Affiliation(s)
- Heng-Wei Hsu
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, California 92617
| | - Stephen C Bondy
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, California 92617
| | - Masashi Kitazawa
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, California 92617
| |
Collapse
|