1
|
Gao J, Leinonen H, Wang EJ, Ding M, Perry G, Palczewski K, Wang X. Sex-Specific Early Retinal Dysfunction in Mutant TDP-43 Transgenic Mice. J Alzheimers Dis 2024; 97:927-937. [PMID: 38143367 PMCID: PMC11174142 DOI: 10.3233/jad-231102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Increasing evidence has highlighted retinal impairments in neurodegenerative diseases. Dominant mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the accumulation of TDP-43 in the cytoplasm is a pathological hallmark of ALS, frontotemporal dementia (FTD), and many other neurodegenerative diseases. OBJECTIVE While homozygous transgenic mice expressing the disease-causing human TDP-43 M337V mutant (TDP-43M337V mice) experience premature death, hemizygous TDP-43M337V mice do not suffer sudden death, but they exhibit age-dependent motor-coordinative and cognitive deficits. This study aims to leverage the hemizygous TDP-43M337V mice as a valuable ALS/FTD disease model for the assessment also of retinal changes during the disease progression. METHODS We evaluated the retinal function of young TDP-43M337V mice by full field electroretinogram (ERG) recordings. RESULTS At 3-4 months of age, well before the onset of brain dysfunction at 8 months, the ERG responses were notably impaired in the retinas of young female TDP-43M337V mice in contrast to their male counterparts and age-matched non-transgenic mice. Mitochondria have been implicated as critical targets of TDP-43. Further investigation revealed that significant changes in the key regulators of mitochondrial dynamics and bioenergetics were only observed in the retinas of young female TDP-43M337V mice, while these alterations were not present in the brains of either gender. CONCLUSIONS Together our findings suggest a sex-specific vulnerability within the retina in the early disease stage, and highlight the importance of retinal changes and mitochondrial markers as potential early diagnostic indicators for ALS, FTD, and other TDP-43 related neurodegenerative conditions.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Henri Leinonen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Evan J Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mao Ding
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, UCI, Irvine, CA, USA
- Department of Physiology and Biophysics, Chemistry and Molecular biology and Biochemsitry, UCI, Irvine, CA, USA
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Parka A, Volbracht C, Hall B, Bastlund JF, Nedergaard M, Laursen B, Botta P, Sotty F. Visual Evoked Potentials as an Early-Stage Biomarker in the rTg4510 Tauopathy Mouse Model. J Alzheimers Dis 2023; 93:247-262. [PMID: 37005884 DOI: 10.3233/jad-220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background: Tauopathies such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Early pathophysiological and functional changes related to neurofibrillary tangles formation are considered to occur prior to extensive neurodegeneration. Hyperphosphorylated tau has been detected in postmortem retinas of AD and FTD patients, and the visual pathway is an easily accessible system in a clinical setting. Hence, assessment of the visual function may offer the potential to detect consequences of early tau pathology in patients. Objective: The aim of this study was to evaluate visual function in a tauopathy mouse model in relation to tau hyperphosphorylation and neurodegeneration. Methods: In this study we explored the association between the visual system and functional consequences of tau pathology progression using a tauopathy rTg4510 mouse model. To this end, we recorded full-field electroretinography and visual evoked potentials in anesthetized and awake states at different ages. Results: While retinal function remained mostly intact within all the age groups investigated, we detected significant changes in amplitudes of visual evoked potential responses in young rTg4510 mice exhibiting early tau pathology prior to neurodegeneration. These functional alterations in the visual cortex were positively correlated with pathological tau levels. Conclusion: Our findings suggest that visual processing could be useful as a novel electrophysiological biomarker for early stages of tauopathy.
Collapse
Affiliation(s)
- Aleksandra Parka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- H. Lundbeck A/S, Research, Valby, Denmark
| | | | | | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
3
|
Frame G, Schuller A, Smith MA, Crish SD, Dengler-Crish CM. Alterations in Retinal Signaling Across Age and Sex in 3xTg Alzheimer’s Disease Mice. J Alzheimers Dis 2022; 88:471-492. [PMID: 35599482 PMCID: PMC9398084 DOI: 10.3233/jad-220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Visual disturbances often precede cognitive dysfunction in patients with Alzheimer’s disease (AD) and may coincide with early accumulation of amyloid-β (Aβ) protein in the retina. These findings have inspired critical research on in vivo ophthalmic Aβ imaging for disease biomarker detection but have not fully answered mechanistic questions on how retinal pathology affects visual signaling between the eye and brain. Objective: The goal of this study was to provide a functional and structural assessment of eye-brain communication between retinal ganglion cells (RGCs) and their primary projection target, the superior colliculus, in female and male 3xTg-AD mice across disease stages. Methods: Retinal electrophysiology, axonal transport, and immunofluorescence were used to determine RGC projection integrity, and retinal and collicular Aβ levels were assessed with advanced protein quantitation techniques. Results: 3xTg mice exhibited nuanced deficits in RGC electrical signaling, axonal transport, and synaptic integrity that exceeded normal age-related decrements in RGC function in age- and sex-matched healthy control mice. These deficits presented in sex-specific patterns among 3xTg mice, differing in the timing and severity of changes. Conclusion: These data support the premise that retinal Aβ is not just a benign biomarker in the eye, but may contribute to subtle, nuanced visual processing deficits. Such disruptions might enhance the biomarker potential of ocular amyloid and differentiate patients with incipient AD from patients experiencing normal age-related decrements in visual function.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, USA
| | - Adam Schuller
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH, USA
| | - Samuel D. Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
4
|
Su KC, Cheng HM, Chu Y, Lu FC, Tsai LH, Cheng CY. Correlating Ocular Physiology and Visual Function with Mild Cognitive Loss in Senior Citizens in Taiwan. J Clin Med 2022; 11:2624. [PMID: 35566750 PMCID: PMC9103053 DOI: 10.3390/jcm11092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose: The transition of Taiwan from an aging to a super-aging society has come with a cost as more elderly now suffer from cognitive impairment. The main purpose of our study was to investigate if early detection can be developed so that timely intervention can be instituted. We analyzed the correlation of cognitive function with ocular physiology and visual functions between senior citizens aged 60 years or older in Taiwan. Methods: Thirty-six healthy subjects were recruited for the study. Addenbrooke's cognitive examination III (ACE-III), binocular functions (including objective and subjective refraction, distance and near dissociated phoria, stereopsis, contrast sensitivity, adult developmental eye movement (ADEM), and ocular physiology (by using optical coherence tomography, OCT, and macular pigment measurement, MPS) were performed, and the data were analyzed via independent t-test, chi-square test, Pearson correlation, linear regression, and ROC (receiver operating characteristic) curve. Results: Data analysis showed that (1) patients with poor eye movement had a strong correlation with the total score and all dimensions of cognitive functions, (2) the thickness of the macula had a strong correlation with attention and memory, and (3) patients with poor eye movement and poor stereopsis in combination with thinner inferior macula appeared to have lower cognitive abilities. Discussion and Conclusions: Cognitive dysfunction is not readily identified during the early stage of cognitive decline. The use of simple and inexpensive ADEM or stereopsis test and comparing the OCT results that are popular in optometry clinics for reference can be diagnostic in identifying patients with mild cognitive impairments. With the combined use of macular pigment density or retinal thickness measurements, it was possible to effectively predict the early degradation of cognition.
Collapse
Affiliation(s)
- Kuo-Chen Su
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan; (Y.C.); (F.-C.L.)
| | - Hong-Ming Cheng
- Department of Optometry, Asia University, Taichung 413, Taiwan;
| | - Yu Chu
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan; (Y.C.); (F.-C.L.)
| | - Fang-Chun Lu
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan; (Y.C.); (F.-C.L.)
| | - Lung-Hui Tsai
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan; (Y.C.); (F.-C.L.)
| | - Ching-Ying Cheng
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan; (Y.C.); (F.-C.L.)
| |
Collapse
|
5
|
Little K, Llorián-Salvador M, Scullion S, Hernández C, Simó-Servat O, Del Marco A, Bosma E, Vargas-Soria M, Carranza-Naval MJ, Van Bergen T, Galbiati S, Viganò I, Musi CA, Schlingemann R, Feyen J, Borsello T, Zerbini G, Klaassen I, Garcia-Alloza M, Simó R, Stitt AW. Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends Endocrinol Metab 2022; 33:50-71. [PMID: 34794851 DOI: 10.1016/j.tem.2021.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - María Llorián-Salvador
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Sarah Scullion
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Cristina Hernández
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Olga Simó-Servat
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Esmeralda Bosma
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | | | - Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Clara Alice Musi
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Reiner Schlingemann
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Tiziana Borsello
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Rafael Simó
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain.
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
6
|
Bajic V, Misic N, Stankovic I, Zaric B, Perry G. Alzheimer's and Consciousness: How Much Subjectivity Is Objective? Neurosci Insights 2021; 16:26331055211033869. [PMID: 34350401 PMCID: PMC8295942 DOI: 10.1177/26331055211033869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/02/2021] [Indexed: 01/03/2023] Open
Abstract
Does Alzheimer Disease show a decline in cognitive functions that relate to the awareness of external reality? In this paper, we will propose a perspective that patients with increasing symptoms of AD show a change in the awareness of subjective versus objective representative axis of reality thus consequently move to a more internal like perception of reality. This paradigm shift suggests that new insights into the dynamicity of the conscious representation of reality in the AD brain may give us new clues to the very early signs of memory and self-awareness impairment that originates from, in our view the microtubules. Dialog between Adso and William, in Umberto Eco's The Name of the Rose, Third Day: Vespers. "But how does it happen," I said with admiration, "that you were able to solve the mystery of the library looking at it from the outside, and you were unable to solve it when you were inside?" "Thus, God knows the world, because He conceived it in His mind, as if it was from the outside, before it was created, and we do not know its rule, because we live inside it, having found it already made."
Collapse
Affiliation(s)
- Vladan Bajic
- Department of Radiobiology and
Molecular Genetics, Vinca Institute, University of Belgrade, Belgrade, Serbia
| | | | - Ivana Stankovic
- Institute of Chemistry, Technology and
Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Bozidarka Zaric
- Department of Radiobiology and
Molecular Genetics, Vinca Institute, University of Belgrade, Belgrade, Serbia
| | - George Perry
- Department of Biology, The University
of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
7
|
Guo L, Ravindran N, Shamsher E, Hill D, Cordeiro MF. Retinal Changes in Transgenic Mouse Models of Alzheimer's Disease. Curr Alzheimer Res 2021; 18:89-102. [PMID: 33855942 DOI: 10.2174/1567205018666210414113634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, the most common form of dementia. AD is characterised by amyloid-β (Aβ) plaques and neurofibrillary tangles (NFT) in the brain, in association with neuronal loss and synaptic failure, causing cognitive deficits. Accurate and early diagnosis is currently unavailable in lifespan, hampering early intervention of potential new treatments. Visual deficits have been well documented in AD patients, and the pathological changes identified in the brain are also believed to be found in the retina, an integral part of the central nervous system. Retinal changes can be detected by real-time non-invasive imaging, due to the transparent nature of the ocular media, potentially allowing an earlier diagnosis as well as monitoring disease progression and treatment outcome. Animal models are essential for AD research, and this review has a focus on retinal changes in various transgenic AD mouse models with retinal imaging and immunohistochemical analysis as well as therapeutic effects in those models. We also discuss the limitations of transgenic AD models in clinical translations.
Collapse
Affiliation(s)
- Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nivedita Ravindran
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ehtesham Shamsher
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Daniel Hill
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Salobrar-García E, López-Cuenca I, Sánchez-Puebla L, de Hoz R, Fernández-Albarral JA, Ramírez AI, Bravo-Ferrer I, Medina V, Moro MA, Saido TC, Saito T, Salazar JJ, Ramírez JM. Retinal Thickness Changes Over Time in a Murine AD Model APP NL-F/NL-F. Front Aging Neurosci 2021; 12:625642. [PMID: 33542683 PMCID: PMC7852550 DOI: 10.3389/fnagi.2020.625642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Alzheimer's disease (AD) may present retinal changes before brain pathology, suggesting the retina as an accessible biomarker of AD. The present work is a diachronic study using spectral domain optical coherence tomography (SD-OCT) to determine the total retinal thickness and retinal nerve fiber layer (RNFL) thickness in an APPNL−F/NL−F mouse model of AD at 6, 9, 12, 15, 17, and 20 months old compared to wild type (WT) animals. Methods: Total retinal thickness and RNFL thickness were determined. The mean total retinal thickness was analyzed following the Early Treatment Diabetic Retinopathy Study sectors. RNFL was measured in six sectors of axonal ring scans around the optic nerve. Results: In the APPNL−F/NL−F group compared to WT animals, the total retinal thickness changes observed were the following: (i) At 6-months-old, a significant thinning in the outer temporal sector was observed; (ii) at 15-months-old a significant thinning in the inner temporal and in the inner and outer inferior retinal sectors was noticed; (iii) at 17-months-old, a significant thickening in the inferior and nasal sectors was found in both inner and outer rings; and (iv) at 20-months-old, a significant thinning in the inner ring of nasal, temporal, and inferior retina and in the outer ring of superior and temporal retina was seen. In RNFL thickness, there was significant thinning in the global analysis and in nasal and inner-temporal sectors at 6 months old. Thinning was also found in the supero-temporal and nasal sectors and global value at 20 months old. Conclusions: In the APPNL−F/NL−F AD model, the retinal thickness showed thinning, possibly produced by neurodegeneration alternating with thickening caused by deposits and neuroinflammation in some areas of the retina. These changes over time are similar to those observed in the human retina and could be a biomarker for AD. The APPNL−F/NL−F AD model may help us better understand the different retinal changes during the progression of AD.
Collapse
Affiliation(s)
- Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and Ear, Nose, and Throat, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Lídia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and Ear, Nose, and Throat, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Ana I Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and Ear, Nose, and Throat, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Isabel Bravo-Ferrer
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.,Edinburgh Medical School, UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Violeta Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María A Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Juan J Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and Ear, Nose, and Throat, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Chiquita S, Campos EJ, Castelhano J, Ribeiro M, Sereno J, Moreira PI, Castelo-Branco M, Ambrósio AF. Retinal thinning of inner sub-layers is associated with cortical atrophy in a mouse model of Alzheimer's disease: a longitudinal multimodal in vivo study. ALZHEIMERS RESEARCH & THERAPY 2019; 11:90. [PMID: 31722748 PMCID: PMC6854691 DOI: 10.1186/s13195-019-0542-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND It has been claimed that the retina can be used as a window to study brain disorders. However, concerning Alzheimer's disease (AD), it still remains controversial whether changes occurring in the brain and retina are associated. We aim to understand when changes start appearing in the retina and brain, how changes progress, and if they are correlated. METHODS We carried out a unique longitudinal study, at 4, 8, 12, and 16 months of age, in a triple transgenic mouse model of AD (3×Tg-AD), which mimics pathological and neurobehavioral features of AD, as we have already shown. Retinal structure and physiology were evaluated in vivo using optical coherence tomography and electroretinography. Brain visual cortex structure was evaluated in vivo using magnetic resonance imaging. RESULTS The retinal thickness of 3×Tg-AD decreased, at all time points, except for the outer nuclear layer, where the opposite alteration was observed. Amplitudes in scotopic and photopic responses were increased throughout the study. Similarly, higher amplitude and lower phase values were observed in the photopic flicker response. No differences were found in the activity of retinal ganglion cells. Visual cortex gray matter volume was significantly reduced. CONCLUSIONS Our results show that this animal model shows similar neural changes in the retina and brain visual cortex, i.e., retinal and brain thinning. Moreover, since similar changes occur in the retina and brain visual cortex, these observations support the possibility of using the eye as an additional tool (noninvasive) for early AD diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Samuel Chiquita
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Elisa J Campos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, 3004-504, Coimbra, Portugal
| | - João Castelhano
- CNC.IBILI Consortium, University of Coimbra, 3004-504, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Mário Ribeiro
- CNC.IBILI Consortium, University of Coimbra, 3004-504, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548, Coimbra, Portugal
| | - José Sereno
- CNC.IBILI Consortium, University of Coimbra, 3004-504, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paula I Moreira
- CNC.IBILI Consortium, University of Coimbra, 3004-504, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal.,Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CNC.IBILI Consortium, University of Coimbra, 3004-504, Coimbra, Portugal. .,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal. .,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548, Coimbra, Portugal.
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal. .,CNC.IBILI Consortium, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
10
|
Georgevsky D, Retsas S, Raoufi N, Shimoni O, Golzan SM. A longitudinal assessment of retinal function and structure in the APP/PS1 transgenic mouse model of Alzheimer's disease. Transl Neurodegener 2019; 8:30. [PMID: 31592131 PMCID: PMC6774218 DOI: 10.1186/s40035-019-0170-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/19/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A great body of evidence suggests that there are retinal functional and structural changes that occur in Alzheimer's disease (AD). However, whether such changes are primary or secondary remains to be elucidated. We studied a range of retinal functional and structural parameters in association with AD- specific pathophysiological markers in the double transgenic APP/PS1 and control mice across age. METHODS Electroretinogram (ERG) and optical coherence tomography (OCT) was performed in APP/PS1 and wild type (WT) control mice every 3 months from 3 to 12 months of age. For functional assessment, the a- and b-wave of the ERG, amplitude of oscillatory potentials (OP) and the positive scotopic threshold response (pSTR) were quantified at each time point. For structural assessment, the inner and outer retinal thickness was segmented and measured from OCT scans. Episodic memory was evaluated at 6, 9 and 12 months of age using the novel object recognition test. Amyloid beta (Aβ) distribution in the hippocampus and the retina were visualised at 3, 6 and 12 months of age. Inter- and intra- group analysis was performed to study rate of change for each parameter between the two groups. RESULTS Inter-group analysis revealed a significant difference in b-wave and OPs of APP/PS1 compared to WT controls starting from 3 months (p < 0.001). There was also a significant difference in the amplitude of pSTR between the two groups starting from 6 months (p < 0.001). Furthermore, a significant difference in the inner retinal thickness, between the two groups, was observed starting from 9 months (p < 0.001). CONCLUSIONS We observed an age-related decline in retinal functional and structural parameters in both APP/PS1 and WT controls, however, inter-group analysis revealed that inner retinal functional and structural decline is exacerbated in APP/PS1 mice, and that retinal functional changes precede structural changes in this strain. Further studies are required to confirm whether such phenomenon occurs in humans and if studying retinal functional changes can aid-in early assessment of AD.
Collapse
Affiliation(s)
- Dana Georgevsky
- Vision Science group, Graduate School of Health (Orthoptics Discipline), University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Stephanie Retsas
- Vision Science group, Graduate School of Health (Orthoptics Discipline), University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Newsha Raoufi
- Vision Science group, Graduate School of Health (Orthoptics Discipline), University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
- Institute of Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Olga Shimoni
- Institute of Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - S. Mojtaba Golzan
- Vision Science group, Graduate School of Health (Orthoptics Discipline), University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| |
Collapse
|
11
|
King JL, Wong AA, Brown RE. Age-Related Changes in the Spatial Frequency Threshold of Male and Female 3xTg-AD Mice Using OptoMotry. J Alzheimers Dis 2019; 62:591-596. [PMID: 29480178 DOI: 10.3233/jad-170805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visual impairments and retinal abnormalities occur in patients with Alzheimer's disease (AD) and in mouse models of AD. It is important to know the visual ability of mouse models of AD to ensure that age-related cognitive deficits are not confounded by visual impairments. Using OptoMotry, the spatial frequency thresholds of male and female 3xTg-AD mice did not differ from their B6129SF2 wildtype controls between 1-18 months of age, but females had higher spatial frequency thresholds than males. However, the differences were quite small, and the visual ability of all mice was comparable to that of C57BL/6 mice.
Collapse
Affiliation(s)
- Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Ocular and Visual Manifestation of Alzheimer’s Disease: A Literature Review II Part: Clinical Studies. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.74239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Chiquita S, Rodrigues-Neves AC, Baptista FI, Carecho R, Moreira PI, Castelo-Branco M, Ambrósio AF. The Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer's Disease: Critical Aspects to Unravel. Mol Neurobiol 2019; 56:5416-5435. [PMID: 30612332 DOI: 10.1007/s12035-018-1461-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease is the most frequent cause of dementia worldwide, representing a global health challenge, with a massive impact on the quality of life of Alzheimer's disease patients and their relatives. The diagnosis of Alzheimer's disease constitutes a real challenge, because the symptoms manifest years after the first degenerative changes occurring in the brain and the diagnosis is based on invasive and/or expensive techniques. Therefore, there is an urgent need to identify new reliable biomarkers to detect Alzheimer's disease at an early stage. Taking into account the evidence for visual deficits in Alzheimer's disease patients, sometimes even before the appearance of the first disease symptoms, and that the retina is an extension of the brain, the concept of the retina as a window to look into the brain or a mirror of the brain has received increasing interest in recent years. However, only a few studies have assessed the changes occurring in the retina and the brain at the same time points. Unlike previous reviews on this subject, which are mainly focused on brain changes, we organized this review by comprehensively summarizing findings related with structural, functional, cellular, and molecular parameters in the retina reported in both Alzheimer's disease patients and animal models. Moreover, we separated the studies that assessed only the retina, and those that assessed both the retina and brain, which are few but allow establishing correlations between the retina and brain. This review also highlights some inconsistent results in the literature as well as relevant missing gaps in this field.
Collapse
Affiliation(s)
- Samuel Chiquita
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana C Rodrigues-Neves
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Rafael Carecho
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, ICNAS, Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Rodriguez L, Mdzomba JB, Joly S, Boudreau-Laprise M, Planel E, Pernet V. Corrigendum: Human Tau Expression Does Not Induce Mouse Retina Neurodegeneration, Suggesting Differential Toxicity of Tau in Brain vs. Retinal Neurons. Front Mol Neurosci 2018; 11:390. [PMID: 30386205 PMCID: PMC6207804 DOI: 10.3389/fnmol.2018.00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Léa Rodriguez
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Julius Baya Mdzomba
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Sandrine Joly
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Mélissa Boudreau-Laprise
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
15
|
Rodriguez L, Mdzomba JB, Joly S, Boudreau-Laprise M, Planel E, Pernet V. Human Tau Expression Does Not Induce Mouse Retina Neurodegeneration, Suggesting Differential Toxicity of Tau in Brain vs. Retinal Neurons. Front Mol Neurosci 2018; 11:293. [PMID: 30197586 PMCID: PMC6117378 DOI: 10.3389/fnmol.2018.00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/03/2018] [Indexed: 02/03/2023] Open
Abstract
The implication of the microtubule-associated protein (MAP) Tau in the ocular manifestations of Alzheimer’s disease (AD) is elusive due to the lack of relevant animal model. However, signs of AD have been reported in the brain of transgenic mice expressing human Tau (hTau). To assess whether hTau is sufficient to induce AD pathogenesis in the retina as well, in the present study, we compared the retinal structure and function of KO mice deprived of Tau (mTKO) with those of transgenic mice expressing hTau. Our results revealed that hTau is particularly abundant in the inner nuclear layer (INL) cells of the retina. By electroretinogram (ERG) recording, light-induced retinal cell activation was not altered in hTau compared with mTKO littermates. Surprisingly, the ERG response mediated by cone photoreceptor stimulation was even stronger in hTau than in mTKO retinae. Immunofluorescent analysis of retinal sections allowed us to observe thicker inner retina in hTau than in mTKO eyes. By Western Blotting (WB), the upregulation of mTOR that was found in hTau mice may underlie retinal structure and function increases. Taken together, our results not only indicate that hTau expression is not toxic for retinal cells but they also suggest that it may play a positive role in visual physiology. The use of hTau may be envisaged to improve visual recovery in ocular diseases affecting the retinal function such as glaucoma or diabetic retinopathy.
Collapse
Affiliation(s)
- Léa Rodriguez
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Julius Baya Mdzomba
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Sandrine Joly
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Mélissa Boudreau-Laprise
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
16
|
Jin N, Lipponen A, Koivisto H, Gurevicius K, Tanila H. Increased cortical beta power and spike-wave discharges in middle-aged APP/PS1 mice. Neurobiol Aging 2018; 71:127-141. [PMID: 30138766 DOI: 10.1016/j.neurobiolaging.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/12/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022]
Abstract
Amyloid plaque-forming transgenic mice display neuronal hyperexcitability, epilepsy, and sudden deaths in early adulthood. However, it is unknown whether hyperexcitability persists until middle ages when memory impairment manifests. We recorded multichannel video electroencephalography (EEG), local field potentials, and auditory evoked potentials in transgenic mice carrying mutated human amyloid precursor protein (APP) and presenilin-1 (PS1) genes and wild-type littermates at 14-16 months and compared the results with data we have earlier collected from 4-month-old mice. Furthermore, we monitored acoustic startle responses in other APP/PS1 and wild-type mice from 3 to 11 months of age. Independent of the age APP/PS1 mice demonstrated increased cortical power at 8-60 Hz. They also displayed over 5-fold increase in the occurrence of spike-wave discharges and augmented auditory evoked potentials compared with nontransgenic littermates. In contrast to evoked potentials, APP/PS1 mice showed normalization of acoustic startle responses with aging. Increased cortical power and spike-wave discharges provide powerful new biomarkers to monitor progression of amyloid pathology in preclinical intervention studies.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Arto Lipponen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
17
|
Leinonen H, Tanila H. Vision in laboratory rodents-Tools to measure it and implications for behavioral research. Behav Brain Res 2017; 352:172-182. [PMID: 28760697 DOI: 10.1016/j.bbr.2017.07.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 02/09/2023]
Abstract
Mice and rats are nocturnal mammals and their vision is specialized for detection of motion and contrast in dim light conditions. These species possess a large proportion of UV-sensitive cones in their retinas and the majority of their optic nerve axons target superior colliculus rather than visual cortex. Therefore, it was a widely held belief that laboratory rodents hardly utilize vision during day-time behavior. This dogma is being questioned as accumulating evidence suggests that laboratory rodents are able to perform complex visual functions, such as perceiving subjective contours, and that declined vision may affect their performance in many behavioral tasks. For instance, genetic engineering may have unexpected consequences on vision as mouse models of Alzheimer's and Huntington's diseases have declined visual function. Rodent vision can be tested in numerous ways using operant training or reflex-based behavioral tasks, or alternatively using electrophysiological recordings. In this article, we will first provide a summary of visual system and explain its characteristics unique to rodents. Then, we present well-established techniques to test rodent vision, with an emphasis on pattern vision: visual water test, optomotor reflex test, pattern electroretinography and pattern visual evoked potentials. Finally, we highlight the importance of visual phenotyping in rodents. As the number of genetically engineered rodent models and volume of behavioral testing increase simultaneously, the possibility of visual dysfunctions needs to be addressed. Neglect in this matter potentially leads to crude biases in the field of neuroscience and beyond.
Collapse
Affiliation(s)
- Henri Leinonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
18
|
Leinonen H, Keksa-Goldsteine V, Ragauskas S, Kohlmann P, Singh Y, Savchenko E, Puranen J, Malm T, Kalesnykas G, Koistinaho J, Tanila H, Kanninen KM. Retinal Degeneration In A Mouse Model Of CLN5 Disease Is Associated With Compromised Autophagy. Sci Rep 2017; 7:1597. [PMID: 28487519 PMCID: PMC5431647 DOI: 10.1038/s41598-017-01716-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/04/2017] [Indexed: 11/25/2022] Open
Abstract
The Finnish variant of late infantile neuronal ceroid lipofuscinosis (CLN5 disease) belongs to a family of neuronal ceroid lipofuscinosis (NCLs) diseases. Vision loss is among the first clinical signs in childhood forms of NCLs. Mutations in CLN5 underlie CLN5 disease. The aim of this study was to characterize how the lack of normal functionality of the CLN5 protein affects the mouse retina. Scotopic electroretinography (ERG) showed a diminished c-wave amplitude in the CLN5 deficient mice already at 1 month of age, indicative of pathological events in the retinal pigmented epithelium. A- and b-waves showed progressive impairment later from 2 and 3 months of age onwards, respectively. Structural and immunohistochemical (IHC) analyses showed preferential damage of photoreceptors, accumulation of autofluorescent storage material, apoptosis of photoreceptors, and strong inflammation in the CLN5 deficient mice retinas. Increased levels of autophagy-associated proteins Beclin-1 and P62, and increased LC3b-II/LC3b-I ratio, were detected by Western blotting from whole retinal extracts. Photopic ERG, visual evoked potentials, IHC and cell counting indicated relatively long surviving cone photoreceptors compared to rods. In conclusion, CLN5 deficient mice develop early vision loss that reflects the condition reported in clinical childhood forms of NCLs. The vision loss in CLN5 deficient mice is primarily caused by photoreceptor degeneration.
Collapse
Affiliation(s)
- Henri Leinonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Philip Kohlmann
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yajuvinder Singh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Savchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Giedrius Kalesnykas
- Experimentica Ltd., Kuopio, Finland
- Research and Development Centre for Ophthalmic Innovations (SILK), Department of Ophthalmology, University of Tampere, Tampere, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
19
|
Joly S, Lamoureux S, Pernet V. Nonamyloidogenic processing of amyloid beta precursor protein is associated with retinal function improvement in aging male APP swe/PS1ΔE9 mice. Neurobiol Aging 2017; 53:181-191. [PMID: 28262325 DOI: 10.1016/j.neurobiolaging.2017.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/18/2023]
Abstract
Vision declines during normal aging and in Alzheimer's disease (AD). Although the toxic role of amyloid beta (Aβ) has been established in AD pathogenesis, its influence on the aging retina is unclear. Using APPswe/PS1ΔE9 transgenic (TG) mice, a classical AD model, the retinal cell function and survival was assessed by electroretinogram (ERG) recordings and immunofluorescent stainings. Strikingly, photopic ERG measurements revealed that the retinal response mediated by cones was preserved in aging TG mice relative to WT controls. In contrast to the cortex, the expression of mutated APPswe and PS1ΔE9 did not allow to detect Aβ or amyloid plaques in 13-month-old male TG retinae. In addition, the CTFβ/CTFα ratio was significantly lower in retinal samples than that in cortical extracts, suggesting that the nonamyloidogenic pathway may endogenously limit Aβ formation in the retina of male mice. Collectively, our data suggest that retinal-specific processing of amyloid may confer protection against AD and selectively preserve cone-dependent vision during aging.
Collapse
Affiliation(s)
- Sandrine Joly
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Simon Lamoureux
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
20
|
Leinonen H, Rossi M, Salo AM, Tiainen P, Hyvärinen J, Pitkänen M, Sormunen R, Miinalainen I, Zhang C, Soininen R, Kivirikko KI, Koskelainen A, Tanila H, Myllyharju J, Koivunen P. Lack of P4H-TM in mice results in age-related retinal and renal alterations. Hum Mol Genet 2016; 25:3810-3823. [DOI: 10.1093/hmg/ddw228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/15/2023] Open
|