1
|
Liu P, Lapcinski IP, Hlynialuk CJ, Steuer EL, Loude TJ, Shapiro SL, Kemper LJ, Ashe KH. Aβ∗56 is a stable oligomer that impairs memory function in mice. iScience 2024; 27:109239. [PMID: 38433923 PMCID: PMC10905009 DOI: 10.1016/j.isci.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Amyloid-β (Aβ) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aβ peptide. Aβ∗56 is a non-fibrillar Aβ assembly that is linked to memory deficits. Previous studies did not decipher specific forms of Aβ present in Aβ∗56. Here, we confirmed the memory-impairing characteristics of Aβ∗56 and extended its biochemical characterization. We used anti-Aβ(1-x), anti-Aβ(x-40), anti-Aβ(x-42), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576, 5xFAD, and APP/TTA mice. In Tg2576, Aβ∗56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-dependent, water-soluble, brain-derived oligomer containing canonical Aβ(1-40). In 5xFAD, Aβ∗56 is composed of Aβ(1-42), whereas in APP/TTA, it contains both Aβ(1-40) and Aβ(1-42). When injected into the hippocampus of wild-type mice, Aβ∗56 derived from Tg2576 mice impairs memory. The unusual stability of this oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.
Collapse
Affiliation(s)
- Peng Liu
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ian P. Lapcinski
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chris J.W. Hlynialuk
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L. Steuer
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas J. Loude
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha L. Shapiro
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa J. Kemper
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen H. Ashe
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Romero-Molina C, Neuner SM, Ryszawiec M, Pébay A, Marcora E, Goate A. Autosomal Dominant Alzheimer's Disease Mutations in Human Microglia Are Not Sufficient to Trigger Amyloid Pathology in WT Mice but Might Affect Pathology in 5XFAD Mice. Int J Mol Sci 2024; 25:2565. [PMID: 38473822 PMCID: PMC10932392 DOI: 10.3390/ijms25052565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Several genetic variants that affect microglia function have been identified as risk factors for Alzheimer's Disease (AD), supporting the importance of this cell type in disease progression. However, the effect of autosomal dominant mutations in the amyloid precursor protein (APP) or the presenilin (PSEN1/2) genes has not been addressed in microglia in vivo. We xenotransplanted human microglia derived from non-carriers and carriers of autosomal dominant AD (ADAD)-causing mutations in the brain of hCSF1 WT or 5XFAD mice. We observed that ADAD mutations in microglia are not sufficient to trigger amyloid pathology in WT mice. In 5XFAD mice, we observed a non-statistically significant increase in amyloid plaque volume and number of dystrophic neurites, coupled with a reduction in plaque-associated microglia in the brain of mice xenotransplanted with ADAD human microglia compared to mice xenotransplanted with non-ADAD microglia. In addition, we observed a non-statistically significant impairment in working and contextual memory in 5XFAD mice xenotransplanted with ADAD microglia compared to those xenotransplanted with non-ADAD-carrier microglia. We conclude that, although not sufficient to initiate amyloid pathology in the healthy brain, mutations in APP and PSEN1 in human microglia might cause mild changes in pathological and cognitive outcomes in 5XFAD mice in a manner consistent with increased AD risk.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| | - Sarah M. Neuner
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| | - Marcelina Ryszawiec
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| | - Alice Pébay
- Department of Anatomy and Physiology, Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| |
Collapse
|
3
|
Boeddrich A, Haenig C, Neuendorf N, Blanc E, Ivanov A, Kirchner M, Schleumann P, Bayraktaroğlu I, Richter M, Molenda CM, Sporbert A, Zenkner M, Schnoegl S, Suenkel C, Schneider LS, Rybak-Wolf A, Kochnowsky B, Byrne LM, Wild EJ, Nielsen JE, Dittmar G, Peters O, Beule D, Wanker EE. A proteomics analysis of 5xFAD mouse brain regions reveals the lysosome-associated protein Arl8b as a candidate biomarker for Alzheimer's disease. Genome Med 2023; 15:50. [PMID: 37468900 PMCID: PMC10357615 DOI: 10.1186/s13073-023-01206-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-β (Aβ) peptides. How Aβ aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aβ aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. METHODS We quantified progressive Aβ aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. RESULTS Experiments revealed faster accumulation of Aβ42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aβ42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aβ aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aβ42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aβ plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. CONCLUSIONS We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker.
Collapse
Affiliation(s)
- Annett Boeddrich
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Christian Haenig
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Nancy Neuendorf
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - University Medicine Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Philipp Schleumann
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Irem Bayraktaroğlu
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Matthias Richter
- Advanced Light Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Christine Mirjam Molenda
- Advanced Light Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Martina Zenkner
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Christin Suenkel
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Luisa-Sophie Schneider
- Department of Psychiatry, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Agnieszka Rybak-Wolf
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Bianca Kochnowsky
- Department of Psychiatry, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Section 8008, Inge Lehmanns Vej 8, 2100, Copenhagen, Denmark
| | - Gunnar Dittmar
- Core Unit Proteomics, Berlin Institute of Health at Charité - University Medicine Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Proteomics of Cellular Signalling, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Oliver Peters
- Department of Psychiatry, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
4
|
Liu P, Lapcinski IP, Shapiro SL, Kemper LJ, Ashe KH. Aβ*56 is a stable oligomer that correlates with age-related memory loss in Tg2576 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533414. [PMID: 36993768 PMCID: PMC10055265 DOI: 10.1101/2023.03.20.533414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Amyloid-β (Aβ) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aβ peptide. Tg2576 human amyloid precursor protein (APP)-expressing transgenic mice modeling Alzheimer's disease produce Aβ*56, a non-fibrillar Aβ assembly that has been shown by several groups to relate more closely to memory deficits than plaques. Previous studies did not decipher specific forms of Aβ present in Aβ*56. Here, we confirm and extend the biochemical characterization of Aβ*56. We used anti-Aβ(1-x), anti-Aβ(x-40), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576 mice of different ages. We found that Aβ*56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-related, water-soluble, brain-derived oligomer containing canonical Aβ(1-40) that correlates with age-related memory loss. The unusual stability of this high molecular-weight oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.
Collapse
|
5
|
Dimopoulos TT, Lippi SLP, Davila JF, Barkey RE, Doherty EN, Flinn JM. White Button Mushroom ( Agaricus bisporus) Supplementation Ameliorates Spatial Memory Deficits and Plaque Formation in an Amyloid Precursor Protein Mouse Model of Alzheimer's Disease. Brain Sci 2022; 12:brainsci12101364. [PMID: 36291298 PMCID: PMC9599624 DOI: 10.3390/brainsci12101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s Disease (AD) is characterized by cognitive impairment and the presence of amyloid-β (Aβ) plaques and tau tangles. This study was conducted to assess the effects of white button mushroom (WBM) supplementation on spatial memory and plaque formation in mice with mutations in amyloid (Aβ). Mice with amyloid precursor protein (hAPP) mutations and their wildtype (WT) littermates were fed a 10% white button mushroom (WBM) feed ad libitum three times per week, in addition to their normal diet. Morris water maze (MWM) was conducted at 14 and 32 weeks of age to assess spatial memory and Aβ plaque pathology in the hippocampus was analyzed. Our results showed that hAPP mice on the WBM diet were faster in reaching the platform in the MWM compared to hAPP mice on the control diet at 32 weeks (p < 0.05). Significantly fewer plaque deposits were found in the hippocampi of hAPP mice on the WBM diet compared to those on the control diet at 32 weeks (p < 0.05). Overall, hAPP mice on the WBM diet had improved spatial memory at 32 weeks of age compared to those on the control diet and exhibited fewer amyloid plaques.
Collapse
Affiliation(s)
- Thalia T. Dimopoulos
- Department of Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Stephen L. P. Lippi
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | - Rachel E. Barkey
- Department of Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Erin N. Doherty
- Department of Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Jane M. Flinn
- Department of Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
- Correspondence:
| |
Collapse
|
6
|
PCSK9 acts as a key regulator of Aβ clearance across the blood-brain barrier. Cell Mol Life Sci 2022; 79:212. [PMID: 35344086 PMCID: PMC8960591 DOI: 10.1007/s00018-022-04237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022]
Abstract
Despite the neurodegenerative disorder Alzheimer's disease (AD) is the most common form of dementia in late adult life, there is currently no therapy available to prevent the onset or slow down the progression of AD. The progressive cognitive decline in AD correlates with a successive accumulation of cerebral amyloid-β (Aβ) due to impaired clearance mechanisms. A significant percentage is removed by low-density lipoprotein receptor-related protein 1 (LRP1)-mediated transport across the blood-brain barrier (BBB) into the periphery. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to members of the low-density lipoprotein receptor protein family at the cell surface and targets them for lysosomal degradation, which reduces the number of functional receptors. However, the adverse impact of PCSK9 on LRP1-mediated brain Aβ clearance remains elusive. By using an established BBB model, we identified reduced LRP1-mediated brain-to-blood Aβ clearance due to PCSK9 across different endothelial monolayer in vitro. Consequently, the repetitive application of FDA-approved monoclonal anti-PCSK9 antibodies into 5xFAD mice decreased the cerebral Aβ burden across variants and aggregation state, which was not reproducible in brain endothelial-specific LRP1-/- 5xFAD mice. The peripheral PCSK9 inhibition reduced Aβ pathology in prefrontal cortex and hippocampus-brain areas critically involved in memory processing-and prevented disease-related impairment in hippocampus-dependent memory formation. Our data suggest that peripheral inhibition of PCSK9 by already available therapeutic antibodies may be a novel and easily applicable potential AD treatment.
Collapse
|
7
|
Shippy DC, Watters JJ, Ulland TK. Transcriptional response of murine microglia in Alzheimer’s disease and inflammation. BMC Genomics 2022; 23:183. [PMID: 35247975 PMCID: PMC8898509 DOI: 10.1186/s12864-022-08417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative disorder and is the most common cause of late-onset dementia. Microglia, the primary innate immune cells of the central nervous system (CNS), have a complex role in AD neuropathology. In the initial stages of AD, microglia play a role in limiting pathology by removing amyloid-β (Aβ) by phagocytosis. In contrast, microglia also release pro-inflammatory cytokines and chemokines to promote neuroinflammation and exacerbate AD neuropathology. Therefore, investigating microglial gene networks could identify new targets for therapeutic strategies for AD. Results We identified 465 differentially expressed genes (DEG) in 5XFAD versus wild-type mice by microarray, 354 DEG in lipopolysaccharide (LPS)-stimulated N9 microglia versus unstimulated control cells using RNA-sequencing (RNA-seq), with 32 DEG common between both datasets. Analyses of the 32 common DEG uncovered numerous molecular functions and pathways involved in Aβ phagocytosis and neuroinflammation associated with AD. Furthermore, multiplex ELISA confirmed the induction of several cytokines and chemokines in LPS-stimulated microglia. Conclusions In summary, AD triggered multiple signaling pathways that regulate numerous genes in microglia, contributing to Aβ phagocytosis and neuroinflammation. Overall, these data identified several regulatory factors and biomarkers in microglia that could be useful in further understanding AD neuropathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08417-8.
Collapse
|
8
|
Neuronal ApoE4 stimulates C/EBPβ activation, promoting Alzheimer’s disease pathology in a mouse model. Prog Neurobiol 2022; 209:102212. [DOI: 10.1016/j.pneurobio.2021.102212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
|
9
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
10
|
Cacabelos R, Carrera I, Martínez-Iglesias O, Cacabelos N, Naidoo V. What is the gold standard model for Alzheimer's disease drug discovery and development? Expert Opin Drug Discov 2021; 16:1415-1440. [PMID: 34330186 DOI: 10.1080/17460441.2021.1960502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Alzheimer's disease models (ADMs) are currently used for drug development (DD). More than 20,000 molecules were screened for AD treatment over decades, with only one drug (Aducanumab)FDA-approved over the past 18 years. A revision of pathogenic concepts and ADMs are needed.Areas covered: The authors discuss herein preclinical models including: (i) in vitro models (cell lines, primary neuron cell cultures, iPSC-derived brain cells), (ii) ex vivo models, and (iii) in vivo models (artificial, transgenic, non-transgenic and induced).Expert opinion: The following types of ADMs have been reported: Mouse models (45.08%), Rat models (15.04%), Non-human Primate models (0.76%), Rabbit models (0.46%), Cat models (0.53%), Pig models (0.30%), Guinea pig models (0.15%), Octodon degu models (0.02%), Dog models (0.54%), Drosophila melanogaster models (1.79%), Zebrafish models (0.50%), Caenorhabditis elegans (1.21%), Cell culture models (3.31%), Cholinergic models (8.26%), Neurotoxic models (6.79%), Neuroinflammation models (6.92%), Neurovascular models (7.88%), and Microbiome models (0.45%).No single ADM faithfully reproduces all the pathogenic events in the human AD phenotype spectrum. ADMs should be different for (i) pathogenic studies vs basic DD, and (ii) preventive interventions vs symptomatic treatments. There cannot be an ideal ADM for DD, because AD is a spectrum of syndromes. DD can integrate pathogenic, mechanistic, metabolic, transporter and pleiotropic genes in a multisystem model.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Departments of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| | - Iván Carrera
- Health Biotechnology, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| | - Olaia Martínez-Iglesias
- Medical Epigenetics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| | - Natalia Cacabelos
- Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| | - Vinogran Naidoo
- Basic Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| |
Collapse
|
11
|
Uddin O, Arakawa K, Raver C, Garagusi B, Keller A. Patterns of cognitive decline and somatosensory processing in a mouse model of amyloid accumulation. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100076. [PMID: 34820549 PMCID: PMC8599510 DOI: 10.1016/j.ynpai.2021.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/13/2023]
Abstract
Despite copious amyloid plaques, 5XFAD mice show modest signs of cognitive decline. At ages 2 to 13 months old 5XFAD mice show no signs of sensory or pain dysfunctions. 5XFAD mice may not be a valid model for pain abnormalities in the context of AD.
Pain and cognitive decline increase with age. In particular, there is a troubling relationship between dementia and pain, with some studies showing higher prevalence and inadequate treatment of pain in this population. Alzheimer’s disease (AD) is one of the most common causes of dementia in older adults. Amyloid plaques are a hallmark of AD. The downstream processes these plaques promote are believed to affect neuronal and glial health and activity. There is a need to better understand how the neuropathological changes of AD shape neural activity and pain sensitivity. Here, we use the 5XFAD mouse model, in which dense amyloid accumulations occur at early ages, and in which previous studies reported signs of cognitive decline. We hypothesized that 5XFAD mice develop sensory and pain processing dysfunctions. Although amyloid burden was high throughout the brain, including in regions involved with sensory processing, we identified no functionally significant differences in reflexive or spontaneous signs of pain. Furthermore, expected signs of cognitive decline were modest; a finding consistent with variable results in the literature. These data suggest that models recapitulating other pathological features of Alzheimer’s disease might be better suited to studying differences in pain perception in this disease.
Collapse
Affiliation(s)
- Olivia Uddin
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Keiko Arakawa
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Charles Raver
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Brendon Garagusi
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| |
Collapse
|
12
|
Ulm BS, Borchelt DR, Moore BD. Remodeling Alzheimer-amyloidosis models by seeding. Mol Neurodegener 2021; 16:8. [PMID: 33588898 PMCID: PMC7885558 DOI: 10.1186/s13024-021-00429-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 11/27/2022] Open
Abstract
Alzheimer’s disease (AD) is among the most prevalent neurodegenerative diseases, with brain pathology defined by extracellular amyloid beta deposits and intracellular tau aggregates. To aid in research efforts to improve understanding of this disease, transgenic murine models have been developed that replicate aspects of AD pathology. Familial AD is associated with mutations in the amyloid precursor protein and in the presenilins (associated with amyloidosis); transgenic amyloid models feature one or more of these mutant genes. Recent advances in seeding methods provide a means to alter the morphology of resultant amyloid deposits and the age that pathology develops. In this review, we discuss the variety of factors that influence the seeding of amyloid beta pathology, including the source of seed, the time interval after seeding, the nature of the transgenic host, and the preparation of the seeding inoculum.
Collapse
Affiliation(s)
- Brittany S Ulm
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Cohn W, Melnik M, Huang C, Teter B, Chandra S, Zhu C, McIntire LB, John V, Gylys KH, Bilousova T. Multi-Omics Analysis of Microglial Extracellular Vesicles From Human Alzheimer's Disease Brain Tissue Reveals Disease-Associated Signatures. Front Pharmacol 2021; 12:766082. [PMID: 34925024 PMCID: PMC8675946 DOI: 10.3389/fphar.2021.766082] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, yet there is no cure or diagnostics available prior to the onset of clinical symptoms. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are released from almost all types of cell. Genome-wide association studies have linked multiple AD genetic risk factors to microglia-specific pathways. It is plausible that microglia-derived EVs may play a role in the progression of AD by contributing to the dissemination of insoluble pathogenic proteins, such as tau and Aβ. Despite the potential utility of EVs as a diagnostic tool, our knowledge of human brain EV subpopulations is limited. Here we present a method for isolating microglial CD11b-positive small EVs from cryopreserved human brain tissue, as well as an integrated multiomics analysis of microglial EVs enriched from the parietal cortex of four late-stage AD (Braak V-VI) and three age-matched normal/low pathology (NL) cases. This integrated analysis revealed 1,000 proteins, 594 lipids, and 105 miRNAs using shotgun proteomics, targeted lipidomics, and NanoString nCounter technology, respectively. The results showed a significant reduction in the abundance of homeostatic microglia markers P2RY12 and TMEM119, and increased levels of disease-associated microglia markers FTH1 and TREM2, in CD11b-positive EVs from AD brain compared to NL cases. Tau abundance was significantly higher in AD brain-derived microglial EVs. These changes were accompanied by the upregulation of synaptic and neuron-specific proteins in the AD group. Levels of free cholesterol were elevated in microglial EVs from the AD brain. Lipidomic analysis also revealed a proinflammatory lipid profile, endolysosomal dysfunction, and a significant AD-associated decrease in levels of docosahexaenoic acid (DHA)-containing polyunsaturated lipids, suggesting a potential defect in acyl-chain remodeling. Additionally, four miRNAs associated with immune and cellular senescence signaling pathways were significantly upregulated in the AD group. Our data suggest that loss of the homeostatic microglia signature in late AD stages may be accompanied by endolysosomal impairment and the release of undigested neuronal and myelin debris, including tau, through extracellular vesicles. We suggest that the analysis of microglia-derived EVs has merit for identifying novel EV-associated biomarkers and providing a framework for future larger-scale multiomics studies on patient-derived cell-type-specific EVs.
Collapse
Affiliation(s)
- Whitaker Cohn
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mikhail Melnik
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Calvin Huang
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sujyoti Chandra
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chunni Zhu
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Laura Beth McIntire
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Varghese John
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tina Bilousova
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Ashe KH. The biogenesis and biology of amyloid β oligomers in the brain. Alzheimers Dement 2020; 16:1561-1567. [PMID: 32543725 PMCID: PMC7984270 DOI: 10.1002/alz.12084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/03/2023]
Abstract
The repeated failure of clinical trials targeting the amyloid beta (Aβ) protein has challenged the amyloid cascade hypothesis. In this perspective, I discuss the biogenesis and biology of Aβ, from the arrangement of its atoms to its effects on the human brain. I hope that this analysis will help guide future attempts to home in on this elusive therapeutic target.
Collapse
Affiliation(s)
- Karen Hsiao Ashe
- Department of NeurologyN. Bud Grossman Center for Memory Research and CareUniversity of Minnesota Medical School, and Minneapolis VA Medical Center, Minneapolis, Minnesota
| |
Collapse
|
15
|
Alsema AM, Jiang Q, Kracht L, Gerrits E, Dubbelaar ML, Miedema A, Brouwer N, Hol EM, Middeldorp J, van Dijk R, Woodbury M, Wachter A, Xi S, Möller T, Biber KP, Kooistra SM, Boddeke EWGM, Eggen BJL. Profiling Microglia From Alzheimer's Disease Donors and Non-demented Elderly in Acute Human Postmortem Cortical Tissue. Front Mol Neurosci 2020; 13:134. [PMID: 33192286 PMCID: PMC7655794 DOI: 10.3389/fnmol.2020.00134] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/06/2020] [Indexed: 01/22/2023] Open
Abstract
Microglia are the tissue-resident macrophages of the central nervous system (CNS). Recent studies based on bulk and single-cell RNA sequencing in mice indicate high relevance of microglia with respect to risk genes and neuro-inflammation in Alzheimer's disease (AD). Here, we investigated microglia transcriptomes at bulk and single-cell levels in non-demented elderly and AD donors using acute human postmortem cortical brain samples. We identified seven human microglial subpopulations with heterogeneity in gene expression. Notably, gene expression profiles and subcluster composition of microglia did not differ between AD donors and non-demented elderly in bulk RNA sequencing nor in single-cell sequencing.
Collapse
Affiliation(s)
- Astrid M. Alsema
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Qiong Jiang
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anneke Miedema
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Roland van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Maya Woodbury
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Astrid Wachter
- Neuroscience Discovery, AbbVie Deutschland GmbH and Co. KG, Ludwigshafen, Germany
| | - Simon Xi
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Thomas Möller
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Knut P. Biber
- Neuroscience Discovery, AbbVie Deutschland GmbH and Co. KG, Ludwigshafen, Germany
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Cellular and Molecular Medicine, Center for Healthy Ageing, University of Copenhagen, Copenhagen, Denmark
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Nasaruddin ML, Syed Abd Halim SA, Kamaruzzaman MA. Studying the Relationship of Intermittent Fasting and β-Amyloid in Animal Model of Alzheimer's Disease: A Scoping Review. Nutrients 2020; 12:nu12103215. [PMID: 33096730 PMCID: PMC7590153 DOI: 10.3390/nu12103215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
We examined the evidence for intermittent fasting (IF) as a preventative tool to influence β-amyloid in animal models of Alzheimer's disease (AD). A Scopus, Ovid, PubMed, and Web of Science (WoS), search yielded 29 results using the keywords "amyloid beta", "intermittent fasting", "intermittent caloric restriction", "alternate day fasting", "modified alternate-day fasting", "time-restricted feeding", "Ramadan fast", "intermittent calori* restriction", "intermittent restrictive diet", and "Alzheimer*". Five research articles addressed directly the effects of intermittent fasting on β-amyloid levels in animal models of AD: alternate day fasting (ADF) and time-restricted feeding (TRF) methods were incorporated in these studies. The study designs were found to be heterogeneous. Variations in the levels of β-amyloid peptides or plaque in either the hippocampus, cortical areas, or both in animals following dietary intervention were observed as compared to the ad libitum group. Non-significant changes were observed in three studies, while two studies interestingly demonstrated amelioration and reduction in β-amyloid levels. Given the conflicting results obtained from this study, significant care has to be taken into consideration before the protocol can be applied as a preventative approach to treat Alzheimer's disease. Longitudinal research is warranted to fully grasp how dietary habits can help alleviate the disease either through upstream or downstream of AD pathology.
Collapse
Affiliation(s)
- Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 17, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
- Correspondence:
| | - Syarifah Aisyah Syed Abd Halim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 18, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, 56000 Malaysia; (S.A.S.A.H.); (M.A.K.)
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 18, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, 56000 Malaysia; (S.A.S.A.H.); (M.A.K.)
| |
Collapse
|
17
|
Braun DJ, Dimayuga E, Morganti JM, Van Eldik LJ. Microglial-associated responses to comorbid amyloid pathology and hyperhomocysteinemia in an aged knock-in mouse model of Alzheimer's disease. J Neuroinflammation 2020; 17:274. [PMID: 32943069 PMCID: PMC7499995 DOI: 10.1186/s12974-020-01938-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Elevated blood homocysteine levels, termed hyperhomocysteinemia (HHcy), is a prevalent risk factor for Alzheimer's disease (AD) in elderly populations. While dietary supplementation of B-vitamins is a generally effective method to lower homocysteine levels, there is little if any benefit to cognition. In the context of amyloid pathology, dietary-induced HHcy is known to enhance amyloid deposition and certain inflammatory responses. Little is known, however, about whether there is a more specific effect on microglia resulting from combined amyloid and HHcy pathologies. METHODS The present study used a knock-in mouse model of amyloidosis, aged to 12 months, given 8 weeks of B-vitamin deficiency-induced HHcy to better understand how microglia are affected in this comorbidity context. RESULTS We found that HHcy-inducing diet increased amyloid plaque burden, altered the neuroinflammatory milieu, and upregulated the expression of multiple damage-associated and "homeostatic" microglial genes. CONCLUSIONS Taken together, these data indicate complex effects of comorbid pathologies on microglial function that are not driven solely by increased amyloid burden. Given the highly dynamic nature of microglia, their central role in AD pathology, and the frequent occurrence of various comorbidities in AD patients, it is increasingly important to understand how microglia respond to mixed pathological processes.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.
| | - Edgardo Dimayuga
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
18
|
Mitroshina EV, Yarkov RS, Mishchenko TA, Krut' VG, Gavrish MS, Epifanova EA, Babaev AA, Vedunova MV. Brain-Derived Neurotrophic Factor (BDNF) Preserves the Functional Integrity of Neural Networks in the β-Amyloidopathy Model in vitro. Front Cell Dev Biol 2020; 8:582. [PMID: 32733889 PMCID: PMC7360686 DOI: 10.3389/fcell.2020.00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a widespread chronic neurodegenerative pathology characterized by synaptic dysfunction, partial neuronal death, cognitive decline and memory impairments. The major hallmarks of AD are extracellular senile amyloid plaques formed by various types of amyloid proteins (Aβ) and the formation and accumulation of intracellular neurofibrillary tangles. However, there is a lack of relevant experimental models for studying changes in neural network activity, the features of intercellular signaling or the effects of drugs on the functional activity of nervous cells during AD development. In this work, we examined two experimental models of amyloidopathy using primary hippocampal cultures. The first model involves the embryonic brains of 5xFAD mice; the second uses chronic application of amyloid beta 1-42 (Aβ1-42). The model based on primary hippocampal cells obtained from 5xFAD mice demonstrated changes in spontaneous network calcium activity characterized by a decrease in the number of cells exhibiting Ca2+ activity, a decrease in the number of Ca2+ oscillations and an increase in the duration of Ca2+ events from day 21 of culture development in vitro. Chronic application of Aβ1-42 resulted in the rapid establishment of significant neurodegenerative changes in primary hippocampal cultures, leading to marked impairments in neural network calcium activity and increased cell death. Using this model and multielectrode arrays, we studied the influence of amyloidopathy on spontaneous bioelectrical neural network activity in primary hippocampal cultures. It was shown that chronic Aβ application decreased the number of network bursts and spikes in a burst. The spatial structure of neural networks was also disturbed that characterized by reduction in both the number of key network elements (hubs) and connections between network elements. Moreover, application of brain-derived neurotrophic factor (BDNF) recombinant protein and BDNF hyperexpression by an adeno-associated virus vector partially prevented these amyloidopathy-induced neurodegenerative phenomena. BDNF maintained cell viability and spontaneous bioelectrical and calcium network activity in primary hippocampal cultures.
Collapse
Affiliation(s)
- Elena V Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Roman S Yarkov
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Tatiana A Mishchenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Molecular and Cell Technologies Group, Central Scientific Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Victoria G Krut'
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria S Gavrish
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina A Epifanova
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey A Babaev
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria V Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
19
|
O'Leary TP, Stover KR, Mantolino HM, Darvesh S, Brown RE. Intact olfactory memory in the 5xFAD mouse model of Alzheimer's disease from 3 to 15 months of age. Behav Brain Res 2020; 393:112731. [PMID: 32522622 DOI: 10.1016/j.bbr.2020.112731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes profound cognitive dysfunction. Deficits in olfactory memory occur in early stages of AD and may be useful in AD diagnosis. The 5xFAD mouse is a commonly used model of AD, as it develops neuropathology, cognitive and sensori-motor dysfunctions similar to those seen in AD. However, olfactory memory dysfunction has not been studied adequately or in detail in 5xFAD mice. Furthermore, despite sex differences in AD prevalence and symptom presentation, few studies using 5xFAD mice have examined sex differences in learning and memory. Therefore, we tested olfactory memory in male and female 5xFAD mice from 3 to 15 months of age using a conditioned odour preference task. Olfactory memory was not impaired in male or female 5xFAD mice at any age tested, nor were there any sex differences. Because early-onset impairments in very long-term (remote) memory have been reported in 5xFAD mice, we trained a group of mice at 3 months of age and tested olfactory memory 90 days later. Very long-term olfactory memory in 5xFAD mice was not impaired, nor was their ability to perform the discrimination task with new odourants. Examination of brains from 5xFAD mice confirmed extensive Aβ-plaque deposition spanning the olfactory memory system, including the olfactory bulb, hippocampus, amygdala and piriform cortex. Overall this study indicates that male and female 5xFAD mice do not develop olfactory memory deficits, despite extensive Aβ deposition within the olfactory-memory regions of the brain.
Collapse
Affiliation(s)
- T P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - K R Stover
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - H M Mantolino
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - S Darvesh
- Department of Medicine (Neurology) and Medical Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - R E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
20
|
Jatrorrhizine Balances the Gut Microbiota and Reverses Learning and Memory Deficits in APP/PS1 transgenic mice. Sci Rep 2019; 9:19575. [PMID: 31862965 PMCID: PMC6925119 DOI: 10.1038/s41598-019-56149-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a complex disorder influenced by both genetic and environmental components and has become a major public health issue throughout the world. Oxidative stress and inflammation play important roles in the evolution of those major pathological symptoms. Jatrorrhizine (JAT), a main component of a traditional Chinese herbal, coptidis rhizome, has been shown to have neuroprotective effects and we previously showed that it is also able to clear oxygen free radicals and reduce inflammatory responses. In this study, we demonstrated that JAT administration could alleviate the learning and memory deficits in AD. Furthermore, we also found that JAT treatment reduced the levels of Aβ plaques in the cortex and hippocampus of APP/PS1 double-transgenic mice. Other studies suggest that there are gut microbiome alterations in AD. In order to explore the underlying mechanisms between gut microbiota and AD, DNA sequencing for 16s rDNA V3-V4 was performed in fecal samples from APP/PS1 transgenic mice and C57BL/6 wild-type (WT) mice. Our results indicated that APP/PS1 mice showed less Operational Taxonomic Units (OTUs) abundance in gut microbiota than WT mice and with different composition. Furthermore, JAT treatment enriched OTUs abundance and alpha diversity in APP/PS1 mice compared to WT mice. High dose of JAT treatment altered the abundance of some specific gut microbiota such as the most predominant phylum Firmicutes and Bacteroidetes in APP/PS1 mice. In conclusion, APP/PS1 mice display gut dysbiosis, and JAT treatment not only improved the memory deficits, but also regulated the abundance of the microbiota. This may provide a therapeutic way to balance the gut dysbiosis in AD patients.
Collapse
|
21
|
Binyamin O, Nitzan K, Frid K, Ungar Y, Rosenmann H, Gabizon R. Brain targeting of 9c,11t-Conjugated Linoleic Acid, a natural calpain inhibitor, preserves memory and reduces Aβ and P25 accumulation in 5XFAD mice. Sci Rep 2019; 9:18437. [PMID: 31804596 PMCID: PMC6895090 DOI: 10.1038/s41598-019-54971-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/21/2019] [Indexed: 02/08/2023] Open
Abstract
Deregulation of Cyclin-dependent kinase 5 (CDK5) by binding to the activated calpain product p25, is associated with the onset of neurodegenerative diseases, such as Alzheimer's disease (AD). Conjugated Linoleic Acid (CLA), a calpain inhibitor, is a metabolite of Punicic Acid (PA), the main component of Pomegranate seed oil (PSO). We have shown recently that long-term administration of Nano-PSO, a nanodroplet formulation of PSO, delays mitochondrial damage and disease advance in a mouse model of genetic Creutzfeldt Jacob disease (CJD). In this project, we first demonstrated that treatment of mice with Nano-PSO, but not with natural PSO, results in the accumulation of CLA in their brains. Next, we tested the cognitive, biochemical and pathological effects of long-term administration of Nano-PSO to 5XFAD mice, modeling for Alzheimer's disease. We show that Nano-PSO treatment prevented age-related cognitive deterioration and mitochondrial oxidative damage in 5XFAD mice. Also, brains of the Nano-PSO treated mice presented reduced accumulation of Aβ and of p25, a calpain product, and increased expression of COX IV-1, a key mitochondrial enzyme. We conclude that administration of Nano-PSO results in the brain targeting of CLA, and suggest that this treatment may prevent/delay the onset of neurodegenerative diseases, such as AD and CJD.
Collapse
Affiliation(s)
- Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Keren Nitzan
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yael Ungar
- Chemistry laboratory, Milouda & Migal Laboratories, Merieux Nutrisciences, Milu'ot South Industrial Zone, Akko, Israel
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
22
|
Yates SC, Groeneboom NE, Coello C, Lichtenthaler SF, Kuhn PH, Demuth HU, Hartlage-Rübsamen M, Roßner S, Leergaard T, Kreshuk A, Puchades MA, Bjaalie JG. QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain. Front Neuroinform 2019; 13:75. [PMID: 31849633 PMCID: PMC6901597 DOI: 10.3389/fninf.2019.00075] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 11/15/2019] [Indexed: 01/22/2023] Open
Abstract
Transgenic animal models are invaluable research tools for elucidating the pathways and mechanisms involved in the development of neurodegenerative diseases. Mechanistic clues can be revealed by applying labelling techniques such as immunohistochemistry or in situ hybridisation to brain tissue sections. Precision in both assigning anatomical location to the sections and quantifying labelled features is crucial for output validity, with a stereological approach or image-based feature extraction typically used. However, both approaches are restricted by the need to manually delineate anatomical regions. To circumvent this limitation, we present the QUINT workflow for quantification and spatial analysis of labelling in series of rodent brain section images based on available 3D reference atlases. The workflow is semi-automated, combining three open source software that can be operated without scripting knowledge, making it accessible to most researchers. As an example, a brain region-specific quantification of amyloid plaques across whole transgenic Tg2576 mouse brain series, immunohistochemically labelled for three amyloid-related antigens is demonstrated. First, the whole brain image series were registered to the Allen Mouse Brain Atlas to produce customised atlas maps adapted to match the cutting plan and proportions of the sections (QuickNII software). Second, the labelling was segmented from the original images by the Random Forest Algorithm for supervised classification (ilastik software). Finally, the segmented images and atlas maps were used to generate plaque quantifications for each region in the reference atlas (Nutil software). The method yielded comparable results to manual delineations and to the output of a stereological method. While the use case demonstrates the QUINT workflow for quantification of amyloid plaques only, the workflow is suited to all mouse or rat brain series with labelling that is visually distinct from the background, for example for the quantification of cells or labelled proteins.
Collapse
Affiliation(s)
- Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christopher Coello
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Hans-Ulrich Demuth
- Department of Molecular Drug Design and Target Validation Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Leipzig, Germany
| | | | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Trygve Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anna Kreshuk
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Maclin JMA, Wang T, Xiao S. Biomarkers for the diagnosis of Alzheimer's disease, dementia Lewy body, frontotemporal dementia and vascular dementia. Gen Psychiatr 2019; 32:e100054. [PMID: 31179427 PMCID: PMC6551430 DOI: 10.1136/gpsych-2019-100054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Dementia is a chronic brain disorder classified by four distinct diseases that impact cognition and mental degeneration. Each subgroup exhibits similar brain deficiencies and mutations. This review will focus on four dementia subgroups: Alzheimer’s disease, vascular dementia, frontotemporal dementia and dementia Lewy body. Aim The aim of this systematic review is to create a concise overview of unique similarities within dementia used to locate and identify new biomarker methods in diagnosing dementia. Methods 123 300 articles published after 2010 were identified from PubMed, JSTOR, WorldCat Online Computer Library and PALNI (Private Academic Library Network of Indiana) using the following search items (in title or abstract): ‘Neurodegenerative Diseases’ OR ‘Biomarkers’ OR ‘Alzheimer’s Disease’ OR ‘Frontal Temporal Lobe Dementia’ OR ‘Vascular Dementia’ OR ‘Dementia Lewy Body’ OR ‘Cerebral Spinal Fluid’ OR ‘Mental Cognitive Impairment’. 47 studies were included in the qualitative synthesis. Results Evidence suggested neuroimaging with amyloid positron emission tomography (PET) scanning and newly found PET tracers to be more effective in diagnosing Alzheimer’s and amnesiac mental cognitive impairment than carbon-11 Pittsburgh compound-B radioisotope tracer. Newly created methods to make PET scans more accurate and practical in clinical settings signify a major shift in diagnosing dementia and neurodegenerative diseases. Conclusion Vast improvements in neuroimaging techniques have led to newly discovered biomarkers and diagnostics. Neuroimaging with amyloid PET scanning surpasses what had been considered the dominant method of neuroimaging and MRI. Newly created methods to make PET scans more accurate and practical in clinical settings signify a major shift in diagnosing dementia pathology. Continued research and studies must be conducted to improve current findings and streamline methods to further subcategorise neurodegenerative disorders and diagnosis.
Collapse
Affiliation(s)
- Joshua Marvin Anthony Maclin
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.,Department of Neuroscience, Earlham College, Richmond, Indiana, USA
| | - Tao Wang
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.,Department of Neuroscience, Earlham College, Richmond, Indiana, USA
| | - Shifu Xiao
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.,Department of Neuroscience, Earlham College, Richmond, Indiana, USA
| |
Collapse
|
24
|
Whitesell JD, Buckley AR, Knox JE, Kuan L, Graddis N, Pelos A, Mukora A, Wakeman W, Bohn P, Ho A, Hirokawa KE, Harris JA. Whole brain imaging reveals distinct spatial patterns of amyloid beta deposition in three mouse models of Alzheimer's disease. J Comp Neurol 2018; 527:2122-2145. [PMID: 30311654 DOI: 10.1002/cne.24555] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
A variety of Alzheimer's disease (AD) mouse models overexpress mutant forms of human amyloid precursor protein (APP), producing high levels of amyloid β (Aβ) and forming plaques. However, the degree to which these models mimic spatiotemporal patterns of Aβ deposition in brains of AD patients is unknown. Here, we mapped the spatial distribution of Aβ plaques across age in three APP-overexpression mouse lines (APP/PS1, Tg2576, and hAPP-J20) using in vivo labeling with methoxy-X04, high throughput whole brain imaging, and an automated informatics pipeline. Images were acquired with high resolution serial two-photon tomography and labeled plaques were detected using custom-built segmentation algorithms. Image series were registered to the Allen Mouse Brain Common Coordinate Framework, a 3D reference atlas, enabling automated brain-wide quantification of plaque density, number, and location. In both APP/PS1 and Tg2576 mice, plaques were identified first in isocortex, followed by olfactory, hippocampal, and cortical subplate areas. In hAPP-J20 mice, plaque density was highest in hippocampal areas, followed by isocortex, with little to no involvement of olfactory or cortical subplate areas. Within the major brain divisions, distinct regions were identified with high (or low) plaque accumulation; for example, the lateral visual area within the isocortex of APP/PS1 mice had relatively higher plaque density compared with other cortical areas, while in hAPP-J20 mice, plaques were densest in the ventral retrosplenial cortex. In summary, we show how whole brain imaging of amyloid pathology in mice reveals the extent to which a given model recapitulates the regional Aβ deposition patterns described in AD.
Collapse
Affiliation(s)
| | | | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, Washington
| | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, Washington
| | - Nile Graddis
- Allen Institute for Brain Science, Seattle, Washington
| | - Andrew Pelos
- Allen Institute for Brain Science, Seattle, Washington.,Department of Neuroscience, Pomona College, Claremont, California
| | - Alice Mukora
- Allen Institute for Brain Science, Seattle, Washington
| | - Wayne Wakeman
- Allen Institute for Brain Science, Seattle, Washington
| | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, Washington
| | - Anh Ho
- Allen Institute for Brain Science, Seattle, Washington
| | | | | |
Collapse
|