1
|
Odorčić I, Hamed MB, Lismont S, Chávez-Gutiérrez L, Efremov RG. Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform. Nat Commun 2024; 15:4479. [PMID: 38802343 PMCID: PMC11130327 DOI: 10.1038/s41467-024-48776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Deposition of amyloid-β (Aβ) peptides in the brain is a hallmark of Alzheimer's disease. Aβs are generated through sequential proteolysis of the amyloid precursor protein by the γ-secretase complexes (GSECs). Aβ peptide length, modulated by the Presenilin (PSEN) and APH-1 subunits of GSEC, is critical for Alzheimer's pathogenesis. Despite high relevance, mechanistic understanding of the proteolysis of Aβ, and its modulation by APH-1, remain incomplete. Here, we report cryo-EM structures of human GSEC (PSEN1/APH-1B) reconstituted into lipid nanodiscs in apo form and in complex with the intermediate Aβ46 substrate without cross-linking. We find that three non-conserved and structurally divergent APH-1 regions establish contacts with PSEN1, and that substrate-binding induces concerted rearrangements in one of the identified PSEN1/APH-1 interfaces, providing structural basis for APH-1 allosteric-like effects. In addition, the GSEC-Aβ46 structure reveals an interaction between Aβ46 and loop 1PSEN1, and identifies three other H-bonding interactions that, according to functional validation, are required for substrate recognition and efficient sequential catalysis.
Collapse
Affiliation(s)
- Ivica Odorčić
- Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Mohamed Belal Hamed
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium.
| | - Rouslan G Efremov
- Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
2
|
Koch M, Enzlein T, Chen S, Petit D, Lismont S, Zacharias M, Hopf C, Chávez‐Gutiérrez L. APP substrate ectodomain defines amyloid-β peptide length by restraining γ-secretase processivity and facilitating product release. EMBO J 2023; 42:e114372. [PMID: 37853914 PMCID: PMC10690472 DOI: 10.15252/embj.2023114372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Sequential proteolysis of the amyloid precursor protein (APP) by γ-secretases generates amyloid-β (Aβ) peptides and defines the proportion of short-to-long Aβ peptides, which is tightly connected to Alzheimer's disease (AD) pathogenesis. Here, we study the mechanism that controls substrate processing by γ-secretases and Aβ peptide length. We found that polar interactions established by the APPC99 ectodomain (ECD), involving but not limited to its juxtamembrane region, restrain both the extent and degree of γ-secretases processive cleavage by destabilizing enzyme-substrate interactions. We show that increasing hydrophobicity, via mutation or ligand binding, at APPC99 -ECD attenuates substrate-driven product release and rescues the effects of Alzheimer's disease-associated pathogenic γ-secretase and APP variants on Aβ length. In addition, our study reveals that APPC99 -ECD facilitates the paradoxical production of longer Aβs caused by some γ-secretase inhibitors, which act as high-affinity competitors of the substrate. These findings assign a pivotal role to the substrate ECD in the sequential proteolysis by γ-secretases and suggest it as a sweet spot for the potential design of APP-targeting compounds selectively promoting its processing by these enzymes.
Collapse
Affiliation(s)
- Matthias Koch
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Thomas Enzlein
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS)Mannheim University of Applied SciencesMannheimGermany
| | - Shu‐Yu Chen
- Physics Department and Center of Functional Protein AssembliesTechnical University of MunichGarchingGermany
| | - Dieter Petit
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Sam Lismont
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Martin Zacharias
- Physics Department and Center of Functional Protein AssembliesTechnical University of MunichGarchingGermany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS)Mannheim University of Applied SciencesMannheimGermany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
3
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
4
|
Genetic landscape of early-onset dementia in Hungary. Neurol Sci 2022; 43:5289-5300. [PMID: 35752680 PMCID: PMC9385840 DOI: 10.1007/s10072-022-06168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 10/31/2022]
Abstract
Abstract
Introduction
Early-onset dementias (EOD) are predominantly genetically determined, but the underlying disease-causing alterations are often unknown. The most frequent forms of EODs are early-onset Alzheimer’s disease (EOAD) and frontotemporal dementia (FTD).
Patients
This study included 120 Hungarian patients with EOD (48 familial and 72 sporadic) which had a diagnosis of EOAD (n = 49), FTD (n = 49), or atypical dementia (n = 22).
Results
Monogenic dementia was detected in 15.8% of the patients. A pathogenic hexanucleotide repeat expansion in the C9ORF72 gene was present in 6.7% of cases and disease-causing variants were detected in other known AD or FTD genes in 6.7% of cases (APP, PSEN1, PSEN2, GRN). A compound heterozygous alteration of the TREM2 gene was identified in one patient and heterozygous damaging variants in the CSF1R and PRNP genes were detected in two other cases. In two patients, the coexistence of several heterozygous damaging rare variants associated with neurodegeneration was detected (1.7%). The APOE genotype had a high odds ratio for both the APOE ɛ4/3 and the ɛ4/4 genotype (OR = 2.7 (95%CI = 1.3–5.9) and OR = 6.5 (95%CI = 1.4–29.2), respectively). In TREM2, SORL1, and ABCA7 genes, 5 different rare damaging variants were detected as genetic risk factors. These alterations were not present in the control group.
Conclusion
Based on our observations, a comprehensive, targeted panel of next-generation sequencing (NGS) testing investigating several neurodegeneration-associated genes may accelerate the path to achieve the proper genetic diagnosis since phenotypes are present on a spectrum. This can also reveal hidden correlations and overlaps in neurodegenerative diseases that would remain concealed in separated genetic testing.
Collapse
|
5
|
A Pathogenic Presenilin-1 Val96Phe Mutation from a Malaysian Family. Brain Sci 2021; 11:brainsci11101328. [PMID: 34679393 PMCID: PMC8534005 DOI: 10.3390/brainsci11101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Presenilin-1 (PSEN1) is one of the causative genes for early onset Alzheimer's disease (EOAD). Recently, emerging studies have reported several novel PSEN1 mutations among Asians. In this study, a PSEN1 Val96Phe mutation was discovered in two siblings from Malaysia with a strong family history of disease. This is the second report of PSEN1 Val96Phe mutation among EOAD patients in Asia and in the world. Patients presented symptomatic changes in their behaviors and personality, such as apathy and withdrawal in their 40s. Previous cellular studies with COS1 cell lines revealed the mutation increased the amyloid-β42 (Aβ42) productions. In the present study, whole-exome sequencing was performed on the two siblings with EOAD, and they were analyzed against the virtual panel of 100 genes from various neurodegenerative diseases. In silico modeling was also performed on PSEN1 Val96Phe mutation. This mutation was located on the first transmembrane helix of PSEN1 protein, resulting significant intramolecular stresses in the helices. This helical domain would play a significant role in γ-secretase cleavage for the increased Aβ42 productions. Several other adjacent mutations were reported in this helical domain, including Ile83Thr or Val89Leu. Our study suggested that perturbations in TMI-HLI-TMII regions could also be associated with C-terminal fragment accumulation of APP and enhanced amyloid productions.
Collapse
|
6
|
Vázquez-Costa JF, Payá-Montes M, Martínez-Molina M, Jaijo T, Szymanski J, Mazón M, Sopena-Novales P, Pérez-Tur J, Sevilla T. Presenilin-1 Mutations Are a Cause of Primary Lateral Sclerosis-Like Syndrome. Front Mol Neurosci 2021; 14:721047. [PMID: 34526879 PMCID: PMC8435856 DOI: 10.3389/fnmol.2021.721047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Primary lateral sclerosis (PLS) is a progressive upper motor neuron (UMN) disorder. It is debated whether PLS is part of the amyotrophic lateral sclerosis (ALS) spectrum, or a syndrome encompassing different neurodegenerative diseases. Recently, new diagnostic criteria for PLS have been proposed. We describe four patients of two pedigrees, meeting definite PLS criteria and harboring two different mutations in presenilin 1 (PSEN1). Methods Patients underwent neurological and neuropsychological examination, MRI, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), amyloid-related biomarkers, and next-generation sequencing (NGS) testing. Results Four patients, aged 25–45 years old, presented with a progressive UMN syndrome meeting clinical criteria of definite PLS. Cognitive symptoms and signs were mild or absent during the first year of the disease but appeared or progressed later in the disease course. Brain MRI showed microbleeds in two siblings, but iron-related hypointensities in the motor cortex were absent. Brain FDG-PET showed variable areas of hypometabolism, including the motor cortex and frontotemporal lobes. Amyloid deposition was confirmed with either cerebrospinal fluid (CSF) or imaging biomarkers. Two heterozygous likely pathogenic mutations in PSEN1 (p.Pro88Leu and p.Leu166Pro) were found in the NGS testing. Conclusion Clinically defined PLS is a syndrome encompassing different neurodegenerative diseases. The NGS testing should be part of the diagnostic workup in patients with PLS, at least in those with red flags, such as early-onset, cognitive impairment, and/or family history of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Francisco Vázquez-Costa
- Neuromuscular Unit and ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - María Payá-Montes
- Neuromuscular Unit and ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Marina Martínez-Molina
- Neuromuscular Unit and ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Teresa Jaijo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain.,Genetics Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jazek Szymanski
- Molecular Genetics Unit, Institut de Biomedicina de València-CSIC, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Valencia, Spain
| | - Miguel Mazón
- Department of Radiology and Biomedical Imaging Research Group GIBI230, Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Pablo Sopena-Novales
- Nuclear Medicine Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Jordi Pérez-Tur
- Molecular Genetics Unit, Institut de Biomedicina de València-CSIC, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Valencia, Spain.,Mixed Unit of Neurology and Genetics, Instituto de Investigación Sanitaria La Fe, València, Spain
| | - Teresa Sevilla
- Neuromuscular Unit and ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Kim HR, Jang JH, Ham H, Choo SH, Park J, Kang SH, Hwangbo S, Jang H, Na DL, Seo SW, Baek JH, Kim HJ. A Case of Early-Onset Alzheimer's Disease Mimicking Schizophrenia in a Patient with Presenilin 1 Mutation (S170P). J Alzheimers Dis 2021; 83:1025-1031. [PMID: 34366354 DOI: 10.3233/jad-210650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Atypical psychological symptoms frequently occur in early-onset Alzheimer's disease (EOAD), which makes it difficult to differentiate it from other psychiatric disorders. We report the case of a 28-year-old woman with EOAD, carrying a presenilin-1 mutation (S170P), who was initially misdiagnosed with schizophrenia because of prominent psychiatric symptoms in the first 1-2 years of the disease. Amyloid-β positron emission tomography (PET) showed remarkably high tracer uptake in the striatum and thalamus. Tau PET showed widespread cortical uptake and relatively low uptake in the subcortical and medial temporal regions. Our case advocates for considering EOAD diagnosis for young patients with psychiatric and atypical cognitive symptoms.
Collapse
Affiliation(s)
- Hang-Rai Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ja Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Honggi Ham
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung Ho Choo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeongho Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Song Hwangbo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Chávez-Gutiérrez L, Szaruga M. Mechanisms of neurodegeneration - Insights from familial Alzheimer's disease. Semin Cell Dev Biol 2020; 105:75-85. [PMID: 32418657 DOI: 10.1016/j.semcdb.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
The rising prevalence of Alzheimer's disease (AD), together with the lack of effective treatments, portray it as one of the major health challenges of our times. Untangling AD implies advancing the knowledge of the biology that gets disrupted during the disease while deciphering the molecular and cellular mechanisms leading to AD-related neurodegeneration. In fact, a solid mechanistic understanding of the disease processes stands as an essential prerequisite for the development of safe and effective treatments. Genetics has provided invaluable clues to the genesis of the disease by revealing deterministic genes - Presenilins (PSENs) and the Amyloid Precursor Protein (APP) - that, when affected, lead in an autosomal dominant manner to early-onset, familial AD (FAD). PSEN is the catalytic subunit of the membrane-embedded γ-secretase complexes, which act as proteolytic switches regulating key cell signalling cascades. Importantly, these intramembrane proteases are responsible for the production of Amyloid β (Aβ) peptides from APP. The convergence of pathogenic mutations on one functional pathway, the amyloidogenic cleavage of APP, strongly supports the significance of this process in AD pathogenesis. Here, we review and discuss the state-of-the-art knowledge of the molecular mechanisms underlying FAD, their implications for the sporadic form of the disease and for the development of safe AD therapeutics.
Collapse
Affiliation(s)
- Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Santos-Mandujano RA, Ryan NS, Chávez-Gutiérrez L, Sánchez-Torres C, Meraz-Ríos MA. Clinical Association of White Matter Hyperintensities Localization in a Mexican Family with Spastic Paraparesis Carrying the PSEN1 A431E Mutation. J Alzheimers Dis 2020; 73:1075-1083. [DOI: 10.3233/jad-190978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Natalie S. Ryan
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Carmen Sánchez-Torres
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), CDMX, México
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), CDMX, México
| |
Collapse
|
10
|
Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells. Nutrients 2017; 9:nu9080883. [PMID: 28813012 PMCID: PMC5579676 DOI: 10.3390/nu9080883] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 12/29/2022] Open
Abstract
Alzheimer′s disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.
Collapse
|
11
|
Alzheimer’s-Causing Mutations Shift Aβ Length by Destabilizing γ-Secretase-Aβn Interactions. Cell 2017; 170:443-456.e14. [DOI: 10.1016/j.cell.2017.07.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022]
|