1
|
Zhang L, Sui S, Wang S, Sun J. Neuroprotective Effect of Corosolic Acid Against Cerebral Ischemia-Reperfusion Injury in Experimental Rats. J Oleo Sci 2022; 71:1501-1510. [PMID: 36089398 DOI: 10.5650/jos.ess22130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several therapeutic approaches were also urgently needed as ischaemic stroke was one of the most common brain disorders. Many phytochemicals have recently been discovered for the advancement of lead-like libraries that are concentrated on the peripheral and central nervous systems. Science does not yet understand how these drugs work, nor do they comprehend their in vivo characteristics. We investigated the potential benefits of corosolic acid (CA) in the treatment of brain injury caused by ischemia/reperfusion (I/R) in adult male Sprague-Dawley rats. Injury occurs after a 2-hour transient occlusion of the posterior cerebral artery and subsequent reperfusion (after 20 hours). Furthermore, the experiment assessed the size of the infarct, the amount of brain water present, as well as the neurofunctional conditions in rats. In the study, several markers of inflammation and cytokines associated with brain injury were measured. The Elisa kit was used in this study to measure the mRNA expression of interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin 1β, TNF-α (tumor necrosis factor), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and nitrous oxide (NO). The CA treatment significantly reduced brain water content, brain infarction volume, neurological scores, and Evans blue leakage (p < 0.001 and p < 0.001). Experimental rats were treated with CA after a significantly reduced level of anti-inflammatory, pro-inflammatory, and oxidative stress mediators was noted in their body tissues and serum (p < 0.001). By suppressing inflammatory responses in rats, CA demonstrated anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| | - Songtao Sui
- Department of Neurosurgery, Qingdao West Coast New Area Central Hospital
| | - Si Wang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| | - Jinbo Sun
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
2
|
Yan W, Ren D, Feng X, Huang J, Wang D, Li T, Zhang D. Neuroprotective and Anti-Inflammatory Effect of Pterostilbene Against Cerebral Ischemia/Reperfusion Injury via Suppression of COX-2. Front Pharmacol 2021; 12:770329. [PMID: 34795593 PMCID: PMC8593399 DOI: 10.3389/fphar.2021.770329] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: The incidence of cerebral ischemia disease leading cause of death in human population worldwide. Treatment of cerebral ischemia remains a clinical challenge for researchers and mechanisms of cerebral ischemia remain unknown. During the cerebral ischemia, inflammatory reaction and oxidative stress plays an important role. The current investigation scrutinized the neuroprotective and anti-inflammatory role of pterostilbene against cerebral ischemia in middle cerebral artery occlusion (MCAO) rodent model and explore the underlying mechanism. Methods: The rats were divided into following groups viz., normal, sham, MCAO and MCAO + pterostilbene (25 mg/kg) group, respectively. The groups received the oral administration of pterostilbene for 30 days followed by MCAO induction. The neurological score, brain water content, infarct volume and Evan blue leakage were estimated. Hepatic, renal, heart, inflammatory cytokines and inflammatory mediators were estimated. Results: Pterostilbene treatment significantly (p < 0.001) improved the body weight and suppressed the glucose level and brain weight. Pterostilbene significantly (p < 0.001) reduced the hepatic, renal and heart parameters. Pterostilbene significantly (p < 0.001) decreased the level of glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and decreased the level of malonaldehyde (MDA), 8-Hydroxy-2′-deoxyguanosine (8-OHdG). Pterostilbene significantly (p < 0.001) inflammatory cytokines and inflammatory parameters such as cyclooxygenase-2 (COX-2), inducible nitric oxidase synthase (iNOS) and prostaglandin (PGE2). Pterostilbene significantly (p < 0.001) down-regulated the level of metalloproteinases (MMP) such as MMP-2 and MMP-9. Pterostilbene suppressed the cellular swelling, cellular disintegration, macrophage infiltration, monocyte infiltration and polymorphonuclear leucocyte degranulation in the brain. Conclusion: In conclusion, Pterostilbene exhibited the neuroprotective effect against cerebral ischemia in rats via anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dongqing Ren
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoxue Feng
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Jinwen Huang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dabin Wang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ting Li
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dong Zhang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
3
|
Simões-Pires EN, Ferreira ST, Linden R. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. J Neurochem 2020; 156:539-552. [PMID: 32683713 DOI: 10.1111/jnc.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
Systemic multimorbidity is highly prevalent in the elderly and, remarkably, coexisting neuropathological markers of Alzheimer's (AD) and cerebrovascular (CVD) diseases are found at autopsy in most brains of patients clinically diagnosed as AD. Little is known on neurodegeneration peculiar to comorbidities, especially at early stages when pathogenesis may propagate at subclinical levels. We developed a novel in vitro model of comorbid CVD/AD in organotypic hippocampal cultures, by combining oxygen-glucose deprivation (OGD) and exposure to amyloid-Aβ oligomers (AβOs), both applied at levels subtoxic to neurons when used in isolation. We focused on synaptic proteins and the roles of glutamate receptors, which have been implicated in many basic and clinical approaches to either CVD or AD. Subtoxic insults by OGD and AβOs synergized to reduce levels of synaptophysin (SYP) and PSD-95 without cell death, while effects of antagonists of either metabotropic or ionotropic glutamate receptors were distinct from reports in models of isolated CVD or AD. In particular, modulation of glutamate receptors differentially impacted SYP and PSD-95, and antagonists of a single receptor subtype had distinct effects when either isolated or combined. Our findings highlight the complexity of CVD/AD comorbidity, help understand variable responses to glutamate receptor antagonists in patients diagnosed with AD and may contribute to future development of therapeutics based on investigation of the pattern of progressive comorbidity.
Collapse
Affiliation(s)
| | - Sergio T Ferreira
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, UFRJ, Rio de Janeiro, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Chen X, Jiang H. Tau as a potential therapeutic target for ischemic stroke. Aging (Albany NY) 2019; 11:12827-12843. [PMID: 31841442 PMCID: PMC6949092 DOI: 10.18632/aging.102547] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Tau is a protein mainly expressed in adult human brain. It plays important roles both in neurodegenerative diseases and stroke. Stroke is an important cause of adult death and disability, ischemic stroke almost account for 80% in all cases. Abundant studies have proven that the increase of dysfunctional tau may act as a vital factor in pathological changes after ischemic stroke. However, the relationship between tau and ischemic stroke remains ununified. Based on present studies, we firstly introduced the structure and biological function of tau protein. Secondly, we summarized the potential regulatory mechanisms of tau protein in the process of ischemic stroke. Thirdly, we discussed about the findings in therapeutic researches of ischemic stroke. This review may be helpful in implementing new therapies for ischemic stroke and may be beneficial for the clinical and experimental studies.
Collapse
Affiliation(s)
- Xin Chen
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Jiang
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Nizari S, Carare RO, Romero IA, Hawkes CA. 3D Reconstruction of the Neurovascular Unit Reveals Differential Loss of Cholinergic Innervation in the Cortex and Hippocampus of the Adult Mouse Brain. Front Aging Neurosci 2019; 11:172. [PMID: 31333445 PMCID: PMC6620643 DOI: 10.3389/fnagi.2019.00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence supports a role for cerebrovasculature dysfunction in the etiology of Alzheimer’s disease (AD). Blood vessels in the brain are composed of a collection of cells and acellular material that comprise the neurovascular unit (NVU). The NVU in the hippocampus and cortex receives innervation from cholinergic neurons that originate in the basal forebrain. Death of these neurons and their nerve fibers is an early feature of AD. However, the effect of the loss of cholinergic innervation on the NVU is not well characterized. The purpose of this study was to evaluate the effect of the loss of cholinergic innervation of components of the NVU at capillaries, arteries and veins in the hippocampus and cortex. Adult male C57BL/6 mice received an intracerebroventricular injection of the immunotoxin p75NTR mu-saporin to induce the loss of cholinergic neurons. Quadruple labeling immunohistochemistry and 3D reconstruction were carried out to characterize specific points of contact between cholinergic fibers and collagen IV, smooth muscle cells and astrocyte endfeet. Innate differences were observed between vessels of the hippocampus and cortex of control mice, including a greater amount of cholinergic contact with perivascular astrocytes in hippocampal capillaries and a thicker basement membrane in hippocampal veins. Saporin treatment induced a loss of cholinergic innervation at the arterial basement membrane and smooth muscle cells of both the hippocampus and the cortex. In the cortex, there was an additional loss of innervation at the astrocytic endfeet. The current results suggest that cortical arteries are more strongly affected by cholinergic denervation than arteries in the hippocampus. This regional variation may have implications for the etiology of the vascular pathology that develops in AD.
Collapse
Affiliation(s)
- Shereen Nizari
- School of Life, Health and Chemical Science, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Roxana O Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ignacio A Romero
- School of Life, Health and Chemical Science, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Cheryl A Hawkes
- School of Life, Health and Chemical Science, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
6
|
Michalski D, Keck AL, Grosche J, Martens H, Härtig W. Immunosignals of Oligodendrocyte Markers and Myelin-Associated Proteins Are Critically Affected after Experimental Stroke in Wild-Type and Alzheimer Modeling Mice of Different Ages. Front Cell Neurosci 2018; 12:23. [PMID: 29467621 PMCID: PMC5807905 DOI: 10.3389/fncel.2018.00023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Because stroke therapies are still limited and patients are often concerned by long-term sequelae with significant impairment of daily living, elaborated neuroprotective strategies are needed. During the last decades, research substantially improved the knowledge on cellular pathologies responsible for stroke-related tissue damage. In this context, the neurovascular unit (NVU) concept has been established, summarizing the affections of neurons, associated astrocytes and the vasculature. Although oligodendrocytes were already identified to play a major role in other brain pathologies, their role during stroke evolution and long-lasting tissue damage is poorly understood. This study aims to explore oligodendrocyte structures, i.e., oligodendrocytes and their myelin-associated proteins, after experimental focal cerebral ischemia. For translational issues, different ages and genotypes including an Alzheimer-like background were considered to mimic potential co-morbidities. Three- and 12-month-old wild-type and triple-transgenic mice were subjected to unilateral middle cerebral artery occlusion. Immunofluorescence labeling was performed on forebrain tissues affected by 24 h of ischemia to visualize the oligodendrocyte-specific protein (OSP), the myelin basic protein (MBP), and the neuron-glia antigen 2 (NG2) with reference to the ischemic lesion. Subsequent analyses concomitantly detected the vasculature and the 2′, 3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) to consider the NVU concept and to explore the functional relevance of histochemical data on applied oligodendrocyte markers. While the immunosignal of NG2 was found to be nearly absent 24 h after ischemia onset, enhanced immunoreactivities for OSP and especially MBP were observed in close regional association to the vasculature. Added quantitative analyses based on inter-hemispheric differences of MBP-immunoreactivity revealed a shell-like pattern with a significant increase directly in the ischemic core, followed by a gradual decline toward the striatum, the ischemic border zone and the lateral neocortex. This observation was consistent in subsequent analyses on the potential impact of age and genetic background. Furthermore, immunoreactivities for CNPase, MBP, and OSP were found to be simultaneously enhanced. In conclusion, this study provides evidence for a critical role of oligodendrocyte structures in the early phase after experimental stroke, strengthening their involvement in the ischemia-affected NVU. Consequently, oligodendrocytes and their myelin-associated proteins may qualify as potential targets for neuroprotective and regenerative approaches in stroke.
Collapse
Affiliation(s)
| | - Anna L Keck
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|