1
|
Yliranta A, Karjalainen VL, Nuorva J, Ahmasalo R, Jehkonen M. Apraxia testing to distinguish early Alzheimer's disease from psychiatric causes of cognitive impairment. Clin Neuropsychol 2023; 37:1629-1650. [PMID: 36829305 DOI: 10.1080/13854046.2023.2181223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Objective: Mood- and stress-related disorders commonly cause attentional and memory impairments in middle-aged individuals. In memory testing, these impairments can be mistakenly interpreted as symptoms of dementia; thus, more reliable diagnostic approaches are needed. The present work defines the discriminant accuracy of the Dementia Apraxia Test (DATE) between psychiatric conditions and early-onset Alzheimer's disease (AD) on its own and in combination with memory tests. Method: The consecutive sample included 50-70-year-old patients referred to dementia investigations for recent cognitive and/or affective symptoms. The DATE was administered and scored as a blinded measurement, and a receiver operating curve analysis was used to define the optimal diagnostic cut-off score. Results: A total of 24 patients were diagnosed with probable AD (mean age 61 ± 4) and 23 with a psychiatric condition (mean age 57 ± 4). The AD patients showed remarkable limb apraxia, but the psychiatric patients mainly performed at a healthy level on the DATE. The test showed a total discriminant accuracy of 87% for a total sum cut-off of 47 (sensitivity 79% and specificity 96%). The limb subscale alone reached an accuracy of 91% for a cut-off of 20 (sensitivity 83% and specificity 100%). All memory tests were diagnostically less accurate, while the combination of the limb praxis subscale and a verbal episodic memory test suggested a correct diagnosis in all but one patient. Conclusions: Apraxia testing may improve the accuracy of differentiation between AD and psychiatric aetiologies. Its potential in severe and chronic psychiatric conditions should be examined in the future.
Collapse
Affiliation(s)
- Aino Yliranta
- Faculty of Social Sciences, Tampere University
- Neurology Clinic, Lapland Central Hospital
| | | | | | | | | |
Collapse
|
2
|
Does progressive aphantasia exist? The hypothetical role of aphantasia in the diagnosis of neurodegenerative diseases. Behav Brain Sci 2022; 45:e299. [DOI: 10.1017/s0140525x21002375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Aphantasia is a heterogeneous neuropsychological syndrome consisting of the inability to create mental images. We argue that its progressive form may be a harbinger of dementia. Aphantasia may manifest as the inability to create any mental images or to create complex scenes, inability to spontaneously initiate generation of mental images, and/or inability to visualize a sequence of events.
Collapse
|
3
|
Burgio F, Danesin L, Benavides-Varela S, Meneghello F, Butterworth B, Arcara G, Semenza C. Numerical activities of daily living: a short version. Neurol Sci 2021; 43:967-978. [PMID: 34164749 DOI: 10.1007/s10072-021-05391-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Specific impairments in numerical functions may cause severe problems in everyday life that cannot be inferred from the available scales evaluating instrumental activities of daily living. The Numerical Activities of Daily living (NADL) is a battery designed to assess the patient's performance in everyday activities involving numbers (Informal Test) and in more scholastic capacities (Formal Test). A downside of this battery is its duration (45 min). The aim of the present study is to build a shorter version of NADL to make it more suitable for clinical and research purposes. The shortening procedure involved only the Formal test, and followed two steps: (i) a correlation of subtests with the general scores, and (ii) an item-analysis within the subtests previously showing higher correlations. Correlations between NADL-Short and NADL original version, and the new cut-offs were calculated. Lastly, the relationship between NADL-Short and other brief cognitive screening tests used in the clinical practice was evaluated in neurological patients and healthy controls. The NADL-Short includes the original Informal Test and the shortened Formal Test. It is a quick and easy clinical tool (15 min) to assess numerical abilities applied to informal and formal situations. It correlates highly with the original battery (Kendall's tau greater than 0.6 across tasks) and the cut-offs correctly identify impaired performance (accuracy of 95% or above). Correlation analysis showed a low positive correlation between NADL-Short and other brief cognitive scales. These findings suggest that it is appropriate to use specific tools to make inferences about a person's numerical abilities.
Collapse
Affiliation(s)
- Francesca Burgio
- San Camillo Hospital, IRCCS, Via Alberoni 70, 30126, Venice, Italy.
| | - Laura Danesin
- San Camillo Hospital, IRCCS, Via Alberoni 70, 30126, Venice, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padua, Italy.,Department of Neuroscience (Padova Neuroscience Center), University of Padova, Padua, Italy
| | | | | | - Giorgio Arcara
- San Camillo Hospital, IRCCS, Via Alberoni 70, 30126, Venice, Italy
| | - Carlo Semenza
- Department of Neuroscience (Padova Neuroscience Center), University of Padova, Padua, Italy
| |
Collapse
|
4
|
Lian TH, Jin Z, Qu YZ, Guo P, Guan HY, Zhang WJ, Ding DY, Li DN, Li LX, Wang XM, Zhang W. The Relationship Between Retinal Nerve Fiber Layer Thickness and Clinical Symptoms of Alzheimer's Disease. Front Aging Neurosci 2021; 12:584244. [PMID: 33584241 PMCID: PMC7878673 DOI: 10.3389/fnagi.2020.584244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
Background/Aim: Retinal nerve fiber layer (RNFL) thickness (RT), which can reflect the status of the retinal optic nerve cells, may be affected in patients with Alzheimer's disease (AD). There are few studies on the correlation of RT of patients with AD (AD-RT) with clinical symptoms of various cognitive domains, neuropsychiatric symptoms, and activities of daily living (ADL). This study is to investigate the relationships between RT and the abovementioned clinical symptoms of AD. Methods: A total of 96 patients with AD were included in this study. RT was measured in these patients using optical coherence tomography (OCT). Demographic variables, RT, and clinical symptoms were compared between the normal and the abnormal AD-RT groups. Clinical symptoms, including cognitive symptoms, neuropsychiatric symptoms, and ADL, were evaluated using a series of rating scales. Results: The relationships between RT and cognitive symptoms scores were analyzed in patients with AD. Reduced RT was found in 54.4% of patients with AD. The average RT, RT of the superior 1/2 quadrant, and RT of the inferior 1/2 quadrant of both eyes were all significantly decreased in the abnormal AD-RT group (p < 0.001). Overall cognitive function and performance in multiple cognitive domains, including memory, language, attention, and executive function, were also significantly impaired in the abnormal AD-RT group (p < 0.05). For lower RT value, the global cognitive function and the performance in multiple cognitive domains were worse. ADL was significantly compromised in patients with AD having lower RT values (p < 0.05). Conclusions: Lower RT value appear to be correlated with cognitive impairment, and RT may be an indicator of cognitive decline in patients with AD. Further studies are required to confirm our findings.
Collapse
Affiliation(s)
- Teng-Hong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhao Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan-Zhen Qu
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital University of Medical Sciences, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-Ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yu Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da-Ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Li
- Department of Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory on Parkinson Disease, Beijing, China
| |
Collapse
|
5
|
Grant JG, Siegel LS, D'Angiulli A. From Schools to Scans: A Neuroeducational Approach to Comorbid Math and Reading Disabilities. Front Public Health 2020; 8:469. [PMID: 33194932 PMCID: PMC7642246 DOI: 10.3389/fpubh.2020.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
We bridge two analogous concepts of comorbidity, dyslexia-dyscalculia and reading-mathematical disabilities, in neuroscience and education, respectively. We assessed the cognitive profiles of 360 individuals (mean age 25.79 ± 13.65) with disability in reading alone (RD group), mathematics alone (MD group) and both (comorbidity: MDRD group), with tests widely used in both psychoeducational and neuropsychological batteries. As expected, the MDRD group exhibited reading deficits like those shown by the RD group. The former group also exhibited deficits in quantitative reasoning like those shown by the MD group. However, other deficits related to verbal working memory and semantic memory were exclusive to the MDRD group. These findings were independent of gender, age, or socioeconomic and demographic factors. Through a systematic exhaustive review of clinical neuroimaging literature, we mapped the resulting cognitive profiles to correspondingly plausible neuroanatomical substrates of dyslexia and dyscalculia. In our resulting "probing" model, the complex set of domain-specific and domain-general impairments shown in the comorbidity of reading and mathematical disabilities are hypothesized as being related to atypical development of the left angular gyrus. The present neuroeducational approach bridges a long-standing transdisciplinary divide and contributes a step further toward improved early prediction, teaching and interventions for children and adults with combined reading and math disabilities.
Collapse
Affiliation(s)
- Jeremy G Grant
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Linda S Siegel
- Department of Educational and Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Early-onset Alzheimer disease (AD) is defined as having an age of onset younger than 65 years. While early-onset AD is often overshadowed by the more common late-onset AD, recognition of the differences between early- and late-onset AD is important for clinicians. RECENT FINDINGS Early-onset AD comprises about 5% to 6% of cases of AD and includes a substantial percentage of phenotypic variants that differ from the usual amnestic presentation of typical AD. Characteristics of early-onset AD in comparison to late-onset AD include a larger genetic predisposition (familial mutations and summed polygenic risk), more aggressive course, more frequent delay in diagnosis, higher prevalence of traumatic brain injury, less memory impairment and greater involvement of other cognitive domains on presentation, and greater psychosocial difficulties. Neuroimaging features of early-onset AD in comparison to late-onset AD include greater frequency of hippocampal sparing and posterior neocortical atrophy, increased tau burden, and greater connectomic changes affecting frontoparietal networks rather than the default mode network. SUMMARY Early-onset AD differs substantially from late-onset AD, with different phenotypic presentations, greater genetic predisposition, and differences in neuropathologic burden and topography. Early-onset AD more often presents with nonamnestic phenotypic variants that spare the hippocampi and with greater tau burden in posterior neocortices. The early-onset AD phenotypic variants involve different neural networks than typical AD. The management of early-onset AD is similar to that of late-onset AD but with special emphasis on targeting specific cognitive areas and more age-appropriate psychosocial support and education.
Collapse
|