1
|
Van Der Lee SJ, Hulsman M, Van Spaendonk R, Van Der Schaar J, Dijkstra J, Tesi N, van Ruissen F, Elting M, Reinders M, De Rojas I, Verschuuren-Bemelmans CC, Van Der Flier WM, van Haelst MM, de Geus C, Pijnenburg Y, Holstege H. Prevalence of Pathogenic Variants and Eligibility Criteria for Genetic Testing in Patients Who Visit a Memory Clinic. Neurology 2025; 104:e210273. [PMID: 39869842 PMCID: PMC11776143 DOI: 10.1212/wnl.0000000000210273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/27/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Identifying genetic causes of dementia in patients visiting memory clinics is important for patient care and family planning. Traditional clinical selection criteria for genetic testing may miss carriers of pathogenic variants in dementia-related genes. This study aimed identify how many carriers we are missing and to optimize criteria for selecting patients for genetic counseling in memory clinics. METHODS In this clinical cohort study, we retrospectively genetically tested patients during 2.5 years (2010-2012) visiting the Alzheimer Center Amsterdam, a specialized memory clinic. Genetic tests consisted of a 54-gene dementia panel, focusing on Class IV/V variants per American College of Medical Genetics and Genomics guidelines, including APP duplications and the C9ORF72 repeat expansion. We determined the prevalence of pathogenic variants and propose new eligibility criteria for genetic testing in memory clinics. The eligibility criteria were prospectively applied for 1 year (2021-2022), and results were compared with the retrospective cohort. RESULTS Genetic tests were retrospectively performed in in 1,022 of 1,138 patients (90%) who consecutively visited the memory clinic. Among these, 1,022 patients analyzed (mean age 62.1 ± 8.9 years; 40.4% were female), 34 pathogenic variant carriers were identified (3.3%), with 24 being symptomatic. Previous clinical criteria would have identified only 15 carriers (44% of all carriers, 65% of symptomatic carriers). The proposed criteria increased identification to 22 carriers (62.5% of all carriers, 91% of symptomatic carriers). In the prospective cohort, 148 (28.7%) of 515 patients were eligible for testing under the new criteria. Of the 90 eligible patients who consented to testing, 13 pathogenic carriers were identified, representing a 73% increase compared with the previous criteria. DISCUSSION We found that patients who visit a memory clinic and carry a pathogenic genetic variant are often not eligible for genetic testing. The proposed new criteria improve the identification of patients with a genetic cause for their cognitive complaints. In systems without practical or financial barriers to genetic testing, the new criteria can enhance personalized care. In other countries where the health care systems differs and in other genetic ancestry groups, the performance of the criteria may be different.
Collapse
Affiliation(s)
- Sven J Van Der Lee
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Marc Hulsman
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Rosalina Van Spaendonk
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jetske Van Der Schaar
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Janna Dijkstra
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Niccoló Tesi
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Fred van Ruissen
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Mariet Elting
- Clinical Genetics, Dept. Human Genetics, Amsterdam UMC, the Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Itziar De Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Wiesje M Van Der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
- Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
| | - Mieke M van Haelst
- Clinical Genetics, Dept. Human Genetics, Amsterdam UMC, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam UMC, the Netherlands; and
- Emma Center for Personalized Medicine, Amsterdam UMC, the Netherlands
| | - Christa de Geus
- Clinical Genetics, Dept. Human Genetics, Amsterdam UMC, the Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| | - Henne Holstege
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, the Netherlands
| |
Collapse
|
2
|
Zhao J, Li T, Wang J. Association between psoriasis and dementia: A systematic review. Neurologia 2024; 39:55-62. [PMID: 38161072 DOI: 10.1016/j.nrleng.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Risk factors for dementia include genetic factors, aging, environmental factors, certain diseases, and unhealthy lifestyle; most types of dementia share a common chronic systemic inflammatory phenotype. Psoriasis is also considered to be a chronic systemic inflammatory disease. It has been suggested that psoriasis may also contribute to the risk of dementia. The aim of this study was to systematically review the literature on the association between psoriasis and dementia. DEVELOPMENT Articles were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the PubMed and Web of Science databases to identify articles published in peer-reviewed journals and studying the association between psoriasis and dementia. Studies meeting the inclusion criteria were reviewed. We used the Newcastle-Ottawa Scale to assess the quality of each study. After applying the inclusion and exclusion criteria, we included 8 studies for review, 3 of which were found to present a higher risk of bias. Six of the 8 studies supported the hypothesis that prior diagnosis of psoriasis increases the risk of dementia; one study including only a few cases reported that psoriasis decreased the risk of dementia, and one study including relatively young patients found no significant association between psoriasis and the risk of dementia. CONCLUSION Most studies included in this review supported the hypothesis that psoriasis constitutes a risk factor for dementia. However, well-designed stratified cohort studies assessing both psoriasis severity and treatment status are still required to determine the real effect of psoriasis on the risk of dementia and its subtypes.
Collapse
Affiliation(s)
- J Zhao
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China.
| | - T Li
- Disease Prevention and Control Section, Shangcai People's Hospital, Shangcai, China
| | - J Wang
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China
| |
Collapse
|
3
|
Lyu S, Lan Z, Li C. The triggering receptor expressed on myeloid cells 2-apolipoprotein E signaling pathway in diseases. Chin Med J (Engl) 2023; 136:1291-1299. [PMID: 37130227 PMCID: PMC10309513 DOI: 10.1097/cm9.0000000000002167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 05/04/2023] Open
Abstract
ABSTRACT Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in the body's immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in Alzheimer's disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2-ApoE pathway on nervous system immunity and inflammation.
Collapse
Affiliation(s)
- Shukai Lyu
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Zhuoqing Lan
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Caixia Li
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
4
|
Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer's Disease. Int J Mol Sci 2023; 24:8417. [PMID: 37176125 PMCID: PMC10179041 DOI: 10.3390/ijms24098417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.
Collapse
Affiliation(s)
- Youngsoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
5
|
Wyszkowska J, Pritchard C. Open Questions on the Electromagnetic Field Contribution to the Risk of Neurodegenerative Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16150. [PMID: 36498223 PMCID: PMC9738318 DOI: 10.3390/ijerph192316150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This work presents the current state of knowledge about the possible contributory influence of the electromagnetic field on the occurrence of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. Up-to-date literature indicates both favourable and adverse effects of electromagnetic exposure on human health, making it difficult to come to valid and unambiguous conclusions. The epidemiological data analysis from the World Health Organization statistics shows a substantial rise in neurological mortality compared with rises in total populations in developed countries over a mere 15-year period. The largest of the analysed countries produced odds ratios of >100%. The contribution of electromagnetic exposure to the incidence of neurodegenerative diseases is still undoubtedly open to discussion, and it requires further in-depth research to assess the action mechanism of electromagnetic fields in neurodegenerative diseases. The limitations of research published hitherto and the problem of drawing unequivocal conclusions are also in focus.
Collapse
Affiliation(s)
- Joanna Wyszkowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Colin Pritchard
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth Gateway, 106 St. Pauls Rd, Bournemouth BH88AJ, UK
| |
Collapse
|
6
|
Abramova O, Soloveva K, Zorkina Y, Gryadunov D, Ikonnikova A, Fedoseeva E, Emelyanova M, Ochneva A, Andriushchenko N, Pavlov K, Pavlova O, Ushakova V, Syunyakov T, Andryushchenko A, Karpenko O, Savilov V, Kurmishev M, Andreuyk D, Gurina O, Chekhonin V, Kostyuk G, Morozova A. Suicide-Related Single Nucleotide Polymorphisms, rs4918918 and rs10903034: Association with Dementia in Older Adults. Genes (Basel) 2022; 13:2174. [PMID: 36421848 PMCID: PMC9690628 DOI: 10.3390/genes13112174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 08/19/2024] Open
Abstract
Dementia has enormous implications for patients and the health care system. Genetic markers are promising for detecting the risk of cognitive impairment. We hypothesized that genetic variants associated with suicide risk might significantly increase the risk of cognitive decline because suicide in older adults is often a consequence of cognitive impairment. We investigated several single-nucleotide polymorphisms that were initially associated with suicide risk in dementia older adults and identified the APOE gene alleles. The study was performed with subjects over the age of 65: 112 patients with dementia and 146 healthy volunteers. The MMSE score was used to assess cognitive functions. Study participants were genotyped using real-time PCR (APOE: rs429358, rs7412; genes associated with suicide: rs9475195, rs7982251, rs2834789, rs358592, rs4918918, rs3781878, rs10903034, rs165774, rs16841143, rs11833579 rs10898553, rs7296262, rs3806263, and rs2462021). Genotype analysis revealed the significance of APOEε4, APOEε2, and rs4918918 (SORBS1) when comparing dementia and healthy control groups. The association of APOEε4, APOEε2, and rs10903034 (IFNLR1) with the overall MMSE score was indicated. The study found an association with dementia of rs4918918 (SORBS1) and rs10903034 (IFNLR1) previously associated with suicide and confirmed the association of APOEε4 and APOEε2 with dementia.
Collapse
Affiliation(s)
- Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Fedoseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Nika Andriushchenko
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Department of Biology, Shenzhen MSU-BIT University, Ruyi Rd. 299, Shenzhen 518172, China
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Timur Syunyakov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- International Centre for Education and Research in Neuropsychiatry (ICERN), Samara State Medical University, 443016 Samara, Russia
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Olga Karpenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Victor Savilov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Marat Kurmishev
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Federal State Budgetary Educational Institution of Higher Education “Moscow State University of Food Production”, Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
7
|
Bartoletti-Stella A, Tarozzi M, Mengozzi G, Asirelli F, Brancaleoni L, Mometto N, Stanzani-Maserati M, Baiardi S, Linarello S, Spallazzi M, Pantieri R, Ferriani E, Caffarra P, Liguori R, Parchi P, Capellari S. Dementia-related genetic variants in an Italian population of early-onset Alzheimer’s disease. Front Aging Neurosci 2022; 14:969817. [PMID: 36133075 PMCID: PMC9484406 DOI: 10.3389/fnagi.2022.969817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Early-onset Alzheimer’s disease (EOAD) is the most common form of early-onset dementia. Although three major genes have been identified as causative, the genetic contribution to the disease remains unsolved in many patients. Recent studies have identified pathogenic variants in genes representing a risk factor for developing Alzheimer’s disease (AD) and in causative genes for other degenerative dementias as responsible for EOAD. To study them further, we investigated a panel of candidate genes in 102 Italian EOAD patients, 45.10% of whom had a positive family history and 21.74% with a strong family history of dementia. We found that 10.78% of patients carried pathogenic or likely pathogenic variants, including a novel variant, in PSEN1, PSEN2, or APP, and 7.84% showed homozygosity for the ε4 APOE allele. Additionally, 7.84% of patients had a moderate risk allele in PSEN1, PSEN2, or TREM2 genes. Besides, we observed that 12.75% of our patients carried only a variant in genes associated with other neurodegenerative diseases. The combination of these variants contributes to explain 46% of cases with a definite familiarity and 32% of sporadic forms. Our results confirm the importance of extensive genetic screening in EOAD for clinical purposes, to select patients for future treatments and to contribute to the definition of overlapping pathogenic mechanisms between AD and other forms of dementia.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Tarozzi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Francesca Asirelli
- Department of Medical Science and Surgery (DIMEC), University of Bologna, Bologna, Italy
| | - Laura Brancaleoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Nicola Mometto
- UOC Neurologia, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | | | - Simone Baiardi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Simona Linarello
- Programma Cure Intermedie - Azienda USL di Bologna, Bologna, Italy
| | - Marco Spallazzi
- U.O. di Neurologia, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Roberta Pantieri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Elisa Ferriani
- UOC Psicologia Clinica Ospedaliera, Ospedale Bellaria, Azienda USL di Bologna, Bologna, Italy
| | - Paolo Caffarra
- Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- *Correspondence: Sabina Capellari,
| |
Collapse
|
8
|
Pagnon de la Vega M, Näslund C, Brundin R, Lannfelt L, Löwenmark M, Kilander L, Ingelsson M, Giedraitis V. Mutation analysis of disease causing genes in patients with early onset or familial forms of Alzheimer's disease and frontotemporal dementia. BMC Genomics 2022; 23:99. [PMID: 35120450 PMCID: PMC8817590 DOI: 10.1186/s12864-022-08343-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Most dementia disorders have a clear genetic background and a number of disease genes have been identified. Mutations in the tau gene (MAPT) lead to frontotemporal dementia (FTD), whereas mutations in the genes for the amyloid-β precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inherited forms of Alzheimer’s disease (AD). Even if mutations causing Mendelian forms of these diseases are uncommon, elucidation of the pathogenic effects of such mutations have proven important for understanding the pathogenic processes. Here, we performed a screen to identify novel pathogenic mutations in known disease genes among patients undergoing dementia investigation. Results Using targeted exome sequencing we have screened all coding exons in eleven known dementia genes (PSEN1, PSEN2, APP, MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP and FUS) in 102 patients with AD, FTD, other dementia diagnoses or mild cognitive impairment. We found three AD patients with two previously identified pathogenic mutations in PSEN1 (Pro264Leu and Met146Val). In this screen, we also identified the recently reported APP mutation in two siblings with AD. This mutation, named the Uppsala mutation, consists of a six amino acid intra-amyloid β deletion. In addition, we found several potentially pathogenic mutations in PSEN2, FUS, MAPT, GRN and APOE. Finally, APOE ε4 was prevalent in this patient group with an allele frequency of 54%. Conclusions Among the 102 screened patients, we found two disease causing mutations in PSEN1 and one in APP, as well as several potentially pathogenic mutations in other genes related to neurodegenerative disorders. Apart from giving important information to the clinical investigation, the identification of disease mutations can contribute to an increased understanding of disease mechanisms.
Collapse
Affiliation(s)
- María Pagnon de la Vega
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Carl Näslund
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - RoseMarie Brundin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden.,Krembil Brain Institute, University Health Network, Toronto, Canada.,Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|
10
|
Sun L, Zhang J, Su N, Zhang S, Yan F, Lin X, Yu J, Li W, Li X, Xiao S. Analysis of Genotype-Phenotype Correlations in Patients With Degenerative Dementia Through the Whole Exome Sequencing. Front Aging Neurosci 2021; 13:745407. [PMID: 34720994 PMCID: PMC8551445 DOI: 10.3389/fnagi.2021.745407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sporadic dementias generally occur in older age and are highly polygenic, which indicates some patients transmitted in a poly-genes hereditary fashion. Objective: Our study aimed to analyze the correlations of genetic features with clinical symptoms in patients with degenerative dementia. Methods: We recruited a group of 84 dementia patients and conducted the whole exome sequencing (WES). The data were analyzed focusing on 153 dementia-related causing and susceptible genes. Results: According to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines, we identified four reported pathogenic variants, namely, PSEN1 c.A344G, APP c.G2149A, MAPT c.G1165A, and MAPT c.G742A, one reported likely pathogenic variant, namely, PSEN2 c.G100A, one novel pathogenic variants, SQSTM1 c.C671A, and three novel likely pathogenic variants, namely, ABCA7 c.C4690T, ATP13A2 c.3135delC, and NOS3 c.2897-2A > G. 21 variants with uncertain significance in PSEN2, C9orf72, NOTCH3, ABCA7, ERBB4, GRN, MPO, SETX, SORL1, NEFH, ADCM10, and SORL1, etc., were also detected in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD). Conclusion: The new variants in dementia-related genes indicated heterogeneity in pathogenesis and phenotype of degenerative dementia. WES could serve as an efficient diagnostic tool for detecting intractable dementia.
Collapse
Affiliation(s)
- Lin Sun
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Zhang
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Su
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowei Zhang
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lin
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yu
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shifu Xiao
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Department of Geriatric Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
D'Acunto E, Fra A, Visentin C, Manno M, Ricagno S, Galliciotti G, Miranda E. Neuroserpin: structure, function, physiology and pathology. Cell Mol Life Sci 2021; 78:6409-6430. [PMID: 34405255 PMCID: PMC8558161 DOI: 10.1007/s00018-021-03907-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.
Collapse
Affiliation(s)
- Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Visentin
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, I.R.C.C.S. Policlinico San Donato, Milan, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
12
|
Huq AJ, Sexton A, Lacaze P, Masters CL, Storey E, Velakoulis D, James PA, Winship IM. Genetic testing in dementia-A medical genetics perspective. Int J Geriatr Psychiatry 2021; 36:1158-1170. [PMID: 33779003 DOI: 10.1002/gps.5535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE When a genetic cause is suspected in a person with dementia, it creates unique diagnostic and management challenges to the treating clinician. Many clinicians may be unaware of the practicalities surrounding genetic testing for their patients, such as when to test and what tests to use and how to counsel patients and their families. This review was conducted to provide guidance to clinicians caring for patients with dementia regarding clinically relevant genetics. METHODS We searched PubMed for studies that involved genetics of dementia up to March 2020. Patient file reviews were also conducted to create composite cases. RESULTS In addition to families where a strong Mendelian pattern of family history is seen, people with younger age of onset, especially before the age of 65 years were found to be at an increased risk of harbouring a genetic cause for their dementia. This review discusses some of the most common genetic syndromes, including Alzheimer disease, frontotemporal dementia, vascular dementia, Parkinson disease dementia/dementia with Lewy bodies and some rarer types of genetic dementias, along with illustrative clinical case studies. This is followed by a brief review of the current genetic technologies and a discussion on the unique genetic counselling issues in dementia. CONCLUSIONS Inclusion of genetic testing in the diagnostic pathway in some patients with dementia could potentially reduce the time taken to diagnose the cause of their dementia. Although a definite advantage as an addition to the diagnostic repository, genetic testing has many pros and cons which need to be carefully considered first.
Collapse
Affiliation(s)
- Aamira J Huq
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Adrienne Sexton
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paul Lacaze
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, The Alfred Centre, Melbourne, Victoria, Australia
| | - Colin L Masters
- Neurosciences, The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Elsdon Storey
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Dennis Velakoulis
- Department of Neuropsychiatry, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paul A James
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ingrid M Winship
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Zhao J, Li T, Wang J. Association between psoriasis and dementia: A systematic review. Neurologia 2021; 39:S0213-4853(21)00027-X. [PMID: 33771384 DOI: 10.1016/j.nrl.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Risk factors for dementia include genetic factors, aging, environmental factors, certain diseases, and unhealthy lifestyle; most types of dementia share a common chronic systemic inflammatory phenotype. Psoriasis is also considered to be a chronic systemic inflammatory disease. It has been suggested that psoriasis may also contribute to the risk of dementia. The aim of this study was to systematically review the literature on the association between psoriasis and dementia. DEVELOPMENT Articles were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the PubMed and Web of Science databases to identify articles published in peer-reviewed journals and studying the association between psoriasis and dementia. Studies meeting the inclusion criteria were reviewed. We used the Newcastle-Ottawa Scale to assess the quality of each study. After applying the inclusion and exclusion criteria, we included 8 studies for review, 3 of which were found to present a higher risk of bias. Six of the 8 studies supported the hypothesis that prior diagnosis of psoriasis increases the risk of dementia; one study including only a few cases reported that psoriasis decreased the risk of dementia, and one study including relatively young patients found no significant association between psoriasis and the risk of dementia. CONCLUSION Most studies included in this review supported the hypothesis that psoriasis constitutes a risk factor for dementia. However, well-designed stratified cohort studies assessing both psoriasis severity and treatment status are still required to determine the real effect of psoriasis on the risk of dementia and its subtypes.
Collapse
Affiliation(s)
- J Zhao
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China.
| | - T Li
- Disease Prevention and Control Section, Shangcai People's Hospital, Shangcai, China
| | - J Wang
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China
| |
Collapse
|
14
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
15
|
Hsu JL, Lin CH, Chen PL, Lin KJ, Chen TF. Genetic study of young-onset dementia using targeted gene panel sequencing in Taiwan. Am J Med Genet B Neuropsychiatr Genet 2021; 186:67-76. [PMID: 33580635 DOI: 10.1002/ajmg.b.32836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/21/2020] [Accepted: 01/23/2021] [Indexed: 12/12/2022]
Abstract
Recent genetic progress allows the molecular diagnosis of young-onset dementia, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). We aimed to identify the mutational and clinical spectra of causal genes in a Taiwanese cohort of young-onset dementia. Ninety-one patients with young-onset dementia and 22 age/gender-matched controls were recruited. Genetic causes were identified by a targeted panel containing 90 causative genes for AD, FTD, and related neurodegenerative disorders. Plasma biomarkers, including total tau, Aβ42, and Aβ40, were assayed. Molecular amyloid and tau PET scans were performed in some patients carrying mutations. Nine of 52 patients (17.3%) with young-onset AD had mutations: 2 (22.2%), 4 (44.5%), 2 (22.2%), and 1 (11.1%) in APP, PSEN1, PSEN2, and TREM2, respectively. Two of 33 patients (6.1%) with young-onset FTD had mutations in MAPT and LRRK2. Three of the 6 patients (50.0%) with possible FTD combined with other neurodegenerative disorders had individual mutations in APP, PSEN2, or MAPT. Patients with PSEN1 mutations had earlier onset of disease than those without mutations (p = .02). Plasma level of total tau was increased and Aβ42 and Aβ40 levels decreased in all groups of dementia patients compared to controls. Our findings provide a genetic spectrum of young-onset dementia in our population.
Collapse
Affiliation(s)
- Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan.,Taipei Medical University, Graduate Institute of Humanities in Medicine and Research Center for Brain and Consciousness, Shuang Ho Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Mega A, Galluzzi S, Bonvicini C, Fostinelli S, Gennarelli M, Geroldi C, Zanetti O, Benussi L, Di Maria E, Frisoni GB. Genetic counselling and testing for inherited dementia: single-centre evaluation of the consensus Italian DIAfN protocol. ALZHEIMERS RESEARCH & THERAPY 2020; 12:152. [PMID: 33203472 PMCID: PMC7670800 DOI: 10.1186/s13195-020-00720-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022]
Abstract
Background A consensus protocol for genetic counselling and testing of familial dementia, the Italian Dominantly Inherited Alzheimer’s and Frontotemporal Network (IT-DIAfN) protocol, has been developed in Italy by a network of expert dementia centres. The aim of this study is to evaluate feasibility and acceptability of the genetic counselling and testing process, as undertaken according to the IT-DIAfN protocol in one of the IT-DIAfN dementia research centres. Methods The protocol was tested by a multidisciplinary team at the IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy, on affected individuals with suspected inherited forms of Alzheimer’s disease (AD) or frontotemporal dementia (FTD), and to healthy at-risk relatives. The genetic counselling and testing process consisted of (i) pre-test consultation and psychological assessment (ii) genetic testing, (iii) genetic test result disclosure and (iv) follow-up consultation and psychological assessment. Results Twenty affected individuals from 17 families fulfilled the family history criteria of the IT-DIAfN protocol for suspected inherited dementia (17 for AD, 2 for FTD, 1 for inclusion body myopathy with Paget disease of bone and frontotemporal dementia) and were included in the protocol. Nineteen out of 20 affected individuals received the genetic test result (one left after the pre-test consultation being not ready to cope with an unfavourable outcome). A pathogenic mutation was found in 6 affected individuals (1 in PSEN1, 2 in PSEN2, 1 in GRN, 1 in MAPT, 1 in VCP). Eleven healthy at-risk relatives asked to undergo predictive testing and were included in the protocol. Three completed the protocol, including follow-up; one did not ask for the genetic test result after genetic testing; and eight withdrew before the genetic testing, mainly due to an increased awareness about the possible consequences of an unfavourable test result. To date, no catastrophic reactions were reported at the follow-up. Conclusions Our case series shows that a structured genetic counselling and testing protocol for inherited dementia can be implemented in both affected individuals and at-risk relatives in a research setting. The procedure was shown to be safe in terms of occurrence of catastrophic events. A formal validation in larger cohorts is needed.
Collapse
Affiliation(s)
- Anna Mega
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Samantha Galluzzi
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Geroldi
- Alzheimer's Unit - Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Orazio Zanetti
- Alzheimer's Unit - Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Emilio Di Maria
- Department of Health Sciences, University of Genoa, Genoa, Italy. .,Unit of Medical Genetics, Galliera Hospital, Genoa, Italy.
| | - Giovanni B Frisoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Han LH, Xue YY, Zheng YC, Li XY, Lin RR, Wu ZY, Tao QQ. Genetic Analysis of Chinese Patients with Early-Onset Dementia Using Next-Generation Sequencing. Clin Interv Aging 2020; 15:1831-1839. [PMID: 33061333 PMCID: PMC7538001 DOI: 10.2147/cia.s271222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Early-onset dementia (EOD) is a relatively uncommon form of dementia that afflicts people before age 65. Only a few studies analyzing the genetics of EOD have been performed in the Chinese Han population. Diagnosing EOD remains a challenge due to the diverse genetic and clinical heterogeneity of these diseases. The aim of this study was to investigate the genetic spectrum and clinical features of Chinese patients with EOD. Materials and Methods A total of 49 EOD patients were recruited. Targeted next-generation (NGS) analyses were performed to screen for all of the known genes associated with dementia. Possible pathogenic variants were confirmed by performing Sanger sequencing. The genetic spectrum and clinical features of the EOD patients were analyzed. Results Seven previously reported pathogenic variants (p.I213T and p.W165C in PSEN1; p.D678N in APP; c.1349_1352del in TBK1; p.P301L and p.R406W in MAPT; p.R110C in NOTCH3) and two novel variants of uncertain significance (p.P436L in PSEN2; c.239-11G>A in TARDBP) were identified. Conclusion Our study demonstrated the genetic spectrum and clinical features of EOD patients, and it reveals that genetic testing of known causal genes in EOD patients can help to make a precise diagnosis.
Collapse
Affiliation(s)
- Li-Hong Han
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Neurology, Second People's Hospital of Luqiao District, Taizhou, People's Republic of China
| | - Yan-Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yi-Cen Zheng
- Department of Psychology, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Xiao-Yan Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Rong-Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
18
|
Luukkainen L, Helisalmi S, Kytövuori L, Ahmasalo R, Solje E, Haapasalo A, Hiltunen M, Remes AM, Krüger J. Mutation Analysis of the Genes Linked to Early Onset Alzheimer's Disease and Frontotemporal Lobar Degeneration. J Alzheimers Dis 2020; 69:775-782. [PMID: 31127772 DOI: 10.3233/jad-181256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lot of effort has been done to unravel the genetics underlying early-onset Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). However, many familial early-onset dementia (EOD) cases still show an unclear genetic background. The aim of this study was to evaluate the role of the known causative mutations and possible pathogenic variants associated with AD and FTLD in a Finnish EOD cohort. The cohort consisted of 39 patients (mean age at onset 54.8 years, range 39-65) with a positive family history of dementia or an atypical or rapidly progressive course of the disease. None of the patients carried the C9orf72 hexanucleotide repeat expansion. Mutations and variants in APP, PSEN1, PSEN2, MAPT, GRN, VCP, CHMP2B, FUS, TARDBP, TREM2, TMEM106B, UBQLN2, SOD1, PRNP, UBQLN1, and BIN1 were screened by using a targeted next generation sequencing panel. Two previously reported pathogenic mutations (PSEN1 p.His163Arg and MAPT p.Arg406Trp) were identified in the cohort. Both patients had familial dementia with an atypical early onset phenotype. In addition, a heterozygous p.Arg71Trp mutation in PSEN2 with an uncertain pathogenic nature was identified in a patient with neuropathologically confirmed AD. In conclusion, targeted investigation of the known dementia-linked genes is worthwhile in patients with onset age under 55 and a positive family history, as well as in patients with atypical features.
Collapse
Affiliation(s)
- Laura Luukkainen
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Riitta Ahmasalo
- Department of Neurology, Lapland Central Hospital, Rovaniemi, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
19
|
Activate or Inhibit? Implications of Autophagy Modulation as a Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186739. [PMID: 32937909 PMCID: PMC7554997 DOI: 10.3390/ijms21186739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.
Collapse
|
20
|
A Customized Next-Generation Sequencing-Based Panel to Identify Novel Genetic Variants in Dementing Disorders: A Pilot Study. Neural Plast 2020. [PMID: 32908482 DOI: 10.1155/2020/8078103.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose The advancements in the next-generation sequencing (NGS) techniques have allowed for rapid, efficient, and cost-time-effective genetic variant detection. However, in both clinical practice and research setting, sequencing is still often limited to the use of gene panels clinically targeted on the genes underlying the disease of interest. Methods We performed a neurogenetic study through an ad hoc NGS-based custom sequencing gene panel in order to screen 16 genes in 8 patients with different types of degenerative cognitive disorders (Alzheimer's disease, mild cognitive impairment, frontotemporal dementia, and dementia associated with Parkinson's disease). The study protocol was based on previous evidence showing a high sensitivity and specificity of the technique even when the panel is limited to some hotspot exons. Results We found variants of the TREM2 and APP genes in three patients; these have been previously identified as pathogenic or likely pathogenic and, therefore, considered "disease causing." In the remaining subjects, the pathogenicity was evaluated according to the guidelines of the American College of Medical Genetics (ACMG). In one patient, the p.R205W variant in the CHMP2B gene was found to be likely pathogenic of the disease. A variant in the CSF1R and SERPINI1 genes found in two patients was classified as benign, whereas the other two (in the GRN and APP genes) were classified as likely pathogenic according to the ACMG. Conclusions Notwithstanding the preliminary value of this study, some rare genetic variants with a probable disease association were detected. Although future application of NGS-based sensors and further replication of these experimental data are needed, this approach seems to offer promising translational perspectives in the diagnosis and management of a wide range of neurodegenerative disorders.
Collapse
|
21
|
Lee KH, Kwon DE, Do Han K, La Y, Han SH. Association between cytomegalovirus end-organ diseases and moderate-to-severe dementia: a population-based cohort study. BMC Neurol 2020; 20:216. [PMID: 32466754 PMCID: PMC7254693 DOI: 10.1186/s12883-020-01776-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The association between cytomegalovirus (CMV) and dementia remains controversial. Previous studies have suggested that CMV serostatus, as assessed by serum immunoglobulin G, plays a role in neurodegeneration with cognitive impairment. We aimed to evaluate the association between CMV tissue-invasive end-organ diseases and moderate-to-severe dementia. METHODS The ICD 10th revision codes from the National Health Insurance Database covering the entire population of the Republic of Korea were used to classify patients into exposed (n = 687, age ≥ 40 years, with CMV disease) and unexposed (n = 3435, without CMV disease) groups, matched by age and sex at a 1:5 ratio of exposed: unexposed. All non-HIV-1-infected subjects selected during 2010-2014 with a washout period of the previous 4 years were followed up until December 2016 to identify newly diagnosed cases of moderate-to-severe dementia. RESULTS Multivariate regression model (M3) adjusted for age, sex, low income, body mass index, transplantation status, malignant neoplasms, end-stage renal disease on dialysis, type 2 diabetes mellitus, hypertension, and dyslipidaemia showed a significantly higher incidence of dementia (odds ratio: 1.9; 95% confidence interval: 1.2-2.8) in the exposed group than that in the unexposed group. The risk of vascular dementia (2.9, 1.1-7.5) was higher than that of Alzheimer's disease (1.6, 1.0-2.6) in the exposed group in M3. In M3, patients aged 40-59 years with CMV diseases had a significantly higher risk of all kinds of dementia than those aged 60-79 and ≥ 80 years (11.7, 2.5-49.4 vs. 1.8, 1.1-3.2 vs. 1.3, 0.5-2.8; P = 0.025). CONCLUSIONS CMV diseases may be associated with the risk of moderate-to-severe dementia.
Collapse
Affiliation(s)
- Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Da Eun Kwon
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Kyung Do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeonju La
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
22
|
D’Argenio V, Sarnataro D. New Insights into the Molecular Bases of Familial Alzheimer's Disease. J Pers Med 2020; 10:jpm10020026. [PMID: 32325882 PMCID: PMC7354425 DOI: 10.3390/jpm10020026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Like several neurodegenerative disorders, such as Prion and Parkinson diseases, Alzheimer's disease (AD) is characterized by spreading mechanism of aggregated proteins in the brain in a typical "prion-like" manner. Recent genetic studies have identified in four genes associated with inherited AD (amyloid precursor protein-APP, Presenilin-1, Presenilin-2 and Apolipoprotein E), rare mutations which cause dysregulation of APP processing and alterations of folding of the derived amyloid beta peptide (A). Accumulation and aggregation of A in the brain can trigger a series of intracellular events, including hyperphosphorylation of tau protein, leading to the pathological features of AD. However, mutations in these four genes account for a small of the total genetic risk for familial AD (FAD). Genome-wide association studies have recently led to the identification of additional AD candidate genes. Here, we review an update of well-established, highly penetrant FAD-causing genes with correlation to the protein misfolding pathway, and novel emerging candidate FAD genes, as well as inherited risk factors. Knowledge of these genes and of their correlated biochemical cascade will provide several potential targets for treatment of AD and aging-related disorders.
Collapse
Affiliation(s)
- Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate scarl, via G. Salvatore 486, 80145 Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, via di val Cannuta 247, 00166 Rome, Italy
- Correspondence: (V.D.); (D.S.); Tel.: +39-081-3737909 (V.D.); +39-081-7464575 (D.S.)
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, via S. Pansini 5, 80131 Naples, Italy
- Correspondence: (V.D.); (D.S.); Tel.: +39-081-3737909 (V.D.); +39-081-7464575 (D.S.)
| |
Collapse
|
23
|
Lanza G, Calì F, Vinci M, Cosentino FII, Tripodi M, Spada RS, Cantone M, Bella R, Mattina T, Ferri R. A Customized Next-Generation Sequencing-Based Panel to Identify Novel Genetic Variants in Dementing Disorders: A Pilot Study. Neural Plast 2020; 2020:8078103. [PMID: 32908482 PMCID: PMC7450320 DOI: 10.1155/2020/8078103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The advancements in the next-generation sequencing (NGS) techniques have allowed for rapid, efficient, and cost-time-effective genetic variant detection. However, in both clinical practice and research setting, sequencing is still often limited to the use of gene panels clinically targeted on the genes underlying the disease of interest. METHODS We performed a neurogenetic study through an ad hoc NGS-based custom sequencing gene panel in order to screen 16 genes in 8 patients with different types of degenerative cognitive disorders (Alzheimer's disease, mild cognitive impairment, frontotemporal dementia, and dementia associated with Parkinson's disease). The study protocol was based on previous evidence showing a high sensitivity and specificity of the technique even when the panel is limited to some hotspot exons. RESULTS We found variants of the TREM2 and APP genes in three patients; these have been previously identified as pathogenic or likely pathogenic and, therefore, considered "disease causing." In the remaining subjects, the pathogenicity was evaluated according to the guidelines of the American College of Medical Genetics (ACMG). In one patient, the p.R205W variant in the CHMP2B gene was found to be likely pathogenic of the disease. A variant in the CSF1R and SERPINI1 genes found in two patients was classified as benign, whereas the other two (in the GRN and APP genes) were classified as likely pathogenic according to the ACMG. CONCLUSIONS Notwithstanding the preliminary value of this study, some rare genetic variants with a probable disease association were detected. Although future application of NGS-based sensors and further replication of these experimental data are needed, this approach seems to offer promising translational perspectives in the diagnosis and management of a wide range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Lanza
- 1Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- 2Oasi Research Institute–IRCCS, Troina, Italy
| | | | | | | | | | | | - Mariagiovanna Cantone
- 3Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Rita Bella
- 4Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Teresa Mattina
- 5Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | |
Collapse
|
24
|
Ciani M, Bonvicini C, Scassellati C, Carrara M, Maj C, Fostinelli S, Binetti G, Ghidoni R, Benussi L. The Missing Heritability of Sporadic Frontotemporal Dementia: New Insights from Rare Variants in Neurodegenerative Candidate Genes. Int J Mol Sci 2019; 20:ijms20163903. [PMID: 31405128 PMCID: PMC6721049 DOI: 10.3390/ijms20163903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal dementia (FTD) is a common form of dementia among early-onset cases. Several genetic factors for FTD have been revealed, but a large proportion of FTD cases still have an unidentified genetic origin. Recent studies highlighted common pathobiological mechanisms among neurodegenerative diseases. In the present study, we investigated a panel of candidate genes, previously described to be associated with FTD and/or other neurodegenerative diseases by targeted next generation sequencing (NGS). We focused our study on sporadic FTD (sFTD), devoid of disease-causing mutations in GRN, MAPT and C9orf72. Since genetic factors have a substantially higher pathogenetic contribution in early onset patients than in late onset dementia, we selected patients with early onset (<65 years). Our study revealed that, in 50% of patients, rare missense potentially pathogenetic variants in genes previously associated with Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis and Lewy body dementia (GBA, ABCA7, PARK7, FUS, SORL1, LRRK2, ALS2), confirming genetic pleiotropy in neurodegeneration. In parallel, a synergic genetic effect on FTD is suggested by the presence of variants in five different genes in one single patient. Further studies employing genome-wide approaches might highlight pathogenic variants in novel genes that explain the still missing heritability of FTD.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Catia Scassellati
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Matteo Carrara
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Carlo Maj
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy.
| |
Collapse
|
25
|
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol Neurodegener 2019; 14:20. [PMID: 31159836 PMCID: PMC6547588 DOI: 10.1186/s13024-019-0323-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence supports that cellular dysregulations in the degradative routes contribute to the initiation and progression of neurodegenerative diseases, including Alzheimer's disease. Autophagy and endolysosomal homeostasis need to be maintained throughout life as they are major cellular mechanisms involved in both the production of toxic amyloid peptides and the clearance of misfolded or aggregated proteins. As such, alterations in endolysosomal and autophagic flux, as a measure of degradation activity in these routes or compartments, may directly impact as well on disease-related mechanisms such as amyloid-β clearance through the blood-brain-barrier and the interneuronal spreading of amyloid-β and/or Tau seeds, affecting synaptic function, plasticity and metabolism. The emerging of several genetic risk factors for late-onset Alzheimer's disease that are functionally related to endocytic transport regulation, including cholesterol metabolism and clearance, supports the notion that in particular the autophagy/lysosomal flux might become more vulnerable during ageing thereby contributing to disease onset. In this review we discuss our current knowledge of the risk genes APOE4, BIN1, CD2AP, PICALM, PLD3 and TREM2 and their impact on endolysosomal (dys)regulations in the light of late-onset Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Zoë P. Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
26
|
Ciani M, Benussi L, Bonvicini C, Ghidoni R. Genome Wide Association Study and Next Generation Sequencing: A Glimmer of Light Toward New Possible Horizons in Frontotemporal Dementia Research. Front Neurosci 2019; 13:506. [PMID: 31156380 PMCID: PMC6532367 DOI: 10.3389/fnins.2019.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a focal neurodegenerative disease, with a strong genetic background, that causes early onset dementia. The present knowledge about the risk loci and causative mutations of FTD mainly derives from genetic linkage analysis, studies of candidate genes, Genome-Wide Association Studies (GWAS) and Next-Generation Sequencing (NGS) applications. In this review, we report recent insights into the genetics of FTD, and, specifically, the results achieved thanks to GWAS and NGS approaches. Linkage studies of large FTD pedigrees have prompted the identification of causal mutations in different genes: mutations in C9orf72, MAPT, and GRN genes explain the large majority of cases with a high family history of the disease. In cases with a less clear inheritance, GWAS and NGS have contributed to further understand the genetic picture of FTD. GWAS identified several common genetic variants with a modest risk effect. Of interest, many of these variants are in genes belonging to the endo-lysosomal pathway, the immune response and neuronal survival. On the opposite, the NGS approach allowed the identification of rare variants with a strong risk effect. These variants were identified in known FTD-associated genes and again in genes involved in the endo-lysosomal pathway and in the immune response. Interestingly, both approaches demonstrated that several genes are associated to multiple neurodegenerative disorders including FTD. Thanks to these complementary approaches, the genetic picture of FTD is becoming more clear and novel key molecular processes are emerging. This will foster opportunities to move toward prevention and therapy for this incurable disease.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|