1
|
Haratizadeh S, Nemati M, Basiri M, Nozari M. Erythropoietin and glial cells in central and peripheral nervous systems. Mol Biol Rep 2024; 51:1065. [PMID: 39422776 DOI: 10.1007/s11033-024-09997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Erythropoietin (EPO) is the main hematopoietic growth factor prescribed to overcome anemia. It is also a neuroprotective agent. EPO binds to the erythropoietin receptor (EPOR), expressed on neurons and glial cells in the central nervous system (CNS), and exerts its neuroprotective potencies through the EPO-EPOR complex. The mechanism of the signal transduction pathways of EPO on glial cells is defined. EPO-EPOR complex can affect neurological disorders, such as Alzheimer's disease, Parkinson's disease, ischemia, retinal injury, stroke, hypoxia, trauma, and demyelinating diseases, through acting downstream signaling pathways. This review focuses on the roles of EPO in different types of glial cells (astrocytes, microglia, oligodendrocytes, and Schwann cells) and their relationships with signaling pathways. Information on the non-erythropoietic action of EPO and related signaling systems in connection with glial cells could enhance EPO treatment to restore different CNS disorders and propose new perspectives on the neuroprotective potential of EPO.
Collapse
Affiliation(s)
- Sara Haratizadeh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Nemati
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Nozari
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Cui ZT, Mao ZT, Yang R, Li JJ, Jia SS, Zhao JL, Zhong FT, Yu P, Dong M. Spinocerebellar ataxias: from pathogenesis to recent therapeutic advances. Front Neurosci 2024; 18:1422442. [PMID: 38894941 PMCID: PMC11185097 DOI: 10.3389/fnins.2024.1422442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Spinocerebellar ataxia is a phenotypically and genetically heterogeneous group of autosomal dominant-inherited degenerative disorders. The gene mutation spectrum includes dynamic expansions, point mutations, duplications, insertions, and deletions of varying lengths. Dynamic expansion is the most common form of mutation. Mutations often result in indistinguishable clinical phenotypes, thus requiring validation using multiple genetic testing techniques. Depending on the type of mutation, the pathogenesis may involve proteotoxicity, RNA toxicity, or protein loss-of-function. All of which may disrupt a range of cellular processes, such as impaired protein quality control pathways, ion channel dysfunction, mitochondrial dysfunction, transcriptional dysregulation, DNA damage, loss of nuclear integrity, and ultimately, impairment of neuronal function and integrity which causes diseases. Many disease-modifying therapies, such as gene editing technology, RNA interference, antisense oligonucleotides, stem cell technology, and pharmacological therapies are currently under clinical trials. However, the development of curative approaches for genetic diseases remains a global challenge, beset by technical, ethical, and other challenges. Therefore, the study of the pathogenesis of spinocerebellar ataxia is of great importance for the sustained development of disease-modifying molecular therapies.
Collapse
Affiliation(s)
- Zi-Ting Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zong-Tao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jia-Jia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan-Shan Jia
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jian-Li Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fang-Tian Zhong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Li L, Li W, Jiang W, Xu R. Sulbactam protects neurons against double neurotoxicity of amyloid beta and glutamate load by upregulating glial glutamate transporter 1. Cell Death Discov 2024; 10:64. [PMID: 38320997 PMCID: PMC10847450 DOI: 10.1038/s41420-024-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Amyloid beta (Abeta) synergistically enhances excitotoxicity of glutamate load by impairing glutamate transporter 1 (GLT1) expression and function, which exacerbates the development of Alzheimer's disease (AD). Our previous studies suggested that sulbactam can upregulate the expression levels and capacity of GLT1. Therefore, this study aims to investigate whether sulbactam improves neuronal tolerance against neurotoxicity of Abeta and glutamate load by up-regulating GLT1 in primary neuron-astrocyte co-cultures. Early postnatal P0-P1 Wistar rat pups' cortices were collected for primary neuron-astrocyte cultures. Hoechst-propidium iodide (HO-PI) stain and lactate dehydrogenase (LDH) assays were used to analyze neuronal death. Cell counting kit 8 (CCK8) was applied to determine cell viability. Immunofluorescence staining and western blotting were used to assess protein expressions including GLT1, B-cell lymphoma 2 (BCL2), BCL2 associated X (BAX), and cleaved caspase 3 (CCP3). Under the double effect of Abeta and glutamate load, more neurons were lost than that induced by Abeta or glutamate alone, shown as decreased cell viability, increased LDH concentration in the cultural medium, HO-PI positive stains, high CCP3 expression, and high BAX/BCL2 ratio resulting from increased BAX and decreased BCL2 expressions. Notably, pre-incubation with sulbactam significantly attenuated the neuronal loss and activation of apoptosis induced by both Abeta and glutamate in a dose-dependent manner. Simultaneously, both astrocytic and neuronal GLT1 expressions were upregulated after sulbactam incubation. Taken together, it could be concluded that sulbactam protected neurons against double neurotoxicity of Abeta and glutamate load by upregulating GLT1 expression. The conclusion provides evidence for potential intervention using sulbactam in AD research.
Collapse
Affiliation(s)
- Li Li
- The Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Wenbin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Vascular Homeostasis Key Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Vascular Homeostasis Key Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Glass HC, Wusthoff CJ, Comstock BA, Numis AL, Gonzalez FF, Maitre N, Massey SL, Mayock DE, Mietzsch U, Natarajan N, Sokol GM, Bonifacio SL, Van Meurs KP, Thomas C, Ahmad KA, Heagerty PJ, Juul SE, Wu YW. Risk of seizures in neonates with hypoxic-ischemic encephalopathy receiving hypothermia plus erythropoietin or placebo. Pediatr Res 2023; 94:252-259. [PMID: 36470964 PMCID: PMC10239788 DOI: 10.1038/s41390-022-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND An ancillary study of the High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) trial for neonates with hypoxic-ischemic encephalopathy (HIE) and treated with therapeutic hypothermia examined the hypothesis that neonates randomized to receive erythropoietin (Epo) would have a lower seizure risk and burden compared with neonates who received placebo. METHODS Electroencephalograms (EEGs) from 7/17 HEAL trial centers were reviewed. Seizure presence was compared across treatment groups using a logistic regression model adjusting for treatment, HIE severity, center, and seizure burden prior to the first dose. Among neonates with seizures, differences across treatment groups in median maximal hourly seizure burden were assessed using adjusted quantile regression models. RESULTS Forty-six of 150 (31%) neonates had EEG seizures (31% in Epo vs 30% in placebo, p = 0.96). Maximal hourly seizure burden after the study drug was not significantly different between groups (median 11.4 for Epo, IQR: 5.6, 18.1 vs median 9.7, IQR: 4.9, 21.0 min/h for placebo). CONCLUSION In neonates with HIE treated with hypothermia who were randomized to Epo or placebo, we found no meaningful between-group difference in seizure risk or burden. These findings are consistent with overall trial results, which do not support Epo use for neonates with HIE undergoing therapeutic hypothermia. IMPACT In the HEAL trial of erythropoietin (Epo) vs placebo for neonates with encephalopathy presumed due to hypoxic-ischemic encephalopathy (HIE) who were also treated with therapeutic hypothermia, electrographic seizures were detected in 31%, which is lower than most prior studies. Epo did not reduce the proportion of neonates with acute provoked seizures (31% in Epo vs 30% in placebo) or maximal hourly seizure burden after the study drug (median 11.4, IQR 5.6, 18.1 for Epo vs median 9.7, IQR 4.9, 21.0 min/h for placebo). There was no anti- or pro-convulsant effect of Epo when combined with therapeutic hypothermia for HIE.
Collapse
Affiliation(s)
- Hannah C Glass
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Courtney J Wusthoff
- Department of Neurology, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA, USA
| | - Bryan A Comstock
- Department Biostatistics, University of Washington, Seattle, WA, USA
| | - Adam L Numis
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Fernando F Gonzalez
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Nathalie Maitre
- Department of Pediatrics, and Emory + Children's Pediatric Institute, Emory University, Atlanta, GA, USA
| | - Shavonne L Massey
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Mayock
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Ulrike Mietzsch
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Niranjana Natarajan
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Gregory M Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Krisa P Van Meurs
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Cameron Thomas
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Sandra E Juul
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Yvonne W Wu
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Almaguer-Melian W, Mercerón-Martínez D, Bergado-Rosado J. A unique erythropoietin dosage induces the recovery of long-term synaptic potentiation in fimbria-fornix lesioned rats. Brain Res 2023; 1799:148178. [PMID: 36442648 DOI: 10.1016/j.brainres.2022.148178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Synapses can experience long-term enhancements in its efficacy transmission in an activity-dependent manner (LTP, Long-Term Potentiation). This could contribute to store the living experiences in memory. Consequently, loss of synaptic plasticity can lead to failures in memory encoding and storage. Hence, finding ways to restore synaptic function can help restore learning and memory ability. Erythropoietin (EPO) has shown beneficial effects in the brain as a neuroprotector, improving affected learning, memory, and synaptic plasticity among other. In the present study, using the fimbria-fornix lesion model, we address the question whether the administration of erythropoietin restores the synaptic capacity to produce long-lasting increases in their transmission efficiency. A series of experiments was designed in which a control group of healthy young animals and one of injured young animals were formed. A subgroup of injured animals was injected with EPO or the vehicle in which the EPO is diluted (Veh). EPO or Veh was administered 15 min before LTP induction. Our data show that EPO produces a recovery in LTP in the group of fimbria-fornix lesioned animals, which show a severe impairment in the maintenance of LTP. Furthermore, LTP in the injured animals that received EPO was similar to that of the healthy control animals. LTP is widely accepted as a cellular mechanism of memory. Restoring LTP by EPO might be a potential tool for the treatment of memory disturbing diseases like Alzheimeŕs disease. Ongoing clinical trials are evaluating a potential therapeutic effect of low sialic acid-EPO (NeuroEPO) on degenerative diseases.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba
| | - Jorge Bergado-Rosado
- Universidad del Sinú "Elías Bechara Zainum", Cra. 1w No. 38-153, Barrio Juan XXIII, Montería, Córdoba 4536534, Colombia.
| |
Collapse
|
6
|
Haratizadeh S, Ranjbar M, Darvishzadeh-Mahani F, Basiri M, Nozari M. The effects of postnatal erythropoietin and nano-erythropoietin on behavioral alterations by mediating K-Cl co-transporter 2 in the valproic acid-induced rat model of autism. Dev Psychobiol 2023; 65:e22353. [PMID: 36567653 DOI: 10.1002/dev.22353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
In this study, based on the excitatory/inhibitory imbalance theory of autism, the time window of GABA switch, the role of K-Cl co-transporter 2 (KCC2) in adjustment GABA switch, and brain permeability to erythropoietin (EPO), the effects of postnatal -EPO and- nano- erythropoietin (NEPO) have been evaluated in the valproic acid (VPA) rat model of autism. The VPA was administered for animal modeling of autism at gestational day (GD) 12.5 (600 mg/kg). Male offsprings were injected with EPO and NEPO in a clinically proper postnatal dosing regimen on postnatal days (PND) 1-5, and autistic-like behaviors were tested at the end of the first month. Then animals were sacrificed, and neuron morphology and KCC2 expression were examined by Nissl staining and Western blot. According to our findings, high-dose NEPO improved autism-associated phenotypes. Neuroprotective effects of EPO and NEPO have been shown in the hippocampus. Postnatal NEPO treatment reversed KCC2 expression abnormalities induced by prenatal VPA. Our results might support the role of KCC2 in ASD and the excitatory/inhibitory imbalance hypothesis. We suggested Nano- erythropoietin and other KCC2 interventions as a new approach to the early treatment and prevention of autism.
Collapse
Affiliation(s)
- Sara Haratizadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Darvishzadeh-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Pharmacological Strategies for Stroke Intervention: Assessment of Pathophysiological Relevance and Clinical Trials. Clin Neuropharmacol 2023; 46:17-30. [PMID: 36515293 DOI: 10.1097/wnf.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The present review describes stroke pathophysiology in brief and discusses the spectrum of available treatments with different promising interventions that are in clinical settings or are in clinical trials. METHODS Relevant articles were searched using Google Scholar, Cochrane Library, and PubMed. Keywords for the search included ischemic stroke, mechanisms, stroke interventions, clinical trials, and stem cell therapy. RESULTS AND CONCLUSION Stroke accounts to a high burden of mortality and morbidity around the globe. Time is an important factor in treating stroke. Treatment options are limited; however, agents with considerable efficacy and tolerability are being continuously explored. With the advances in stroke interventions, new therapies are being formulated with a hope that these may aid the ongoing protective and reparative processes. Such therapies may have an extended therapeutic time window in hours, days, weeks, or longer and may have the advantage to be accessible by a majority of the patients.
Collapse
|
8
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
9
|
Bringas Vega ML, Pedroso Ibáñez I, Razzaq FA, Zhang M, Morales Chacón L, Ren P, Galan Garcia L, Gan P, Virues Alba T, Lopez Naranjo C, Jahanshahi M, Bosch-Bayard J, Valdes-Sosa PA. The Effect of Neuroepo on Cognition in Parkinson's Disease Patients Is Mediated by Electroencephalogram Source Activity. Front Neurosci 2022; 16:841428. [PMID: 35844232 PMCID: PMC9280298 DOI: 10.3389/fnins.2022.841428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
We report on the quantitative electroencephalogram (qEEG) and cognitive effects of Neuroepo in Parkinson's disease (PD) from a double-blind safety trial (https://clinicaltrials.gov/, number NCT04110678). Neuroepo is a new erythropoietin (EPO) formulation with a low sialic acid content with satisfactory results in animal models and tolerance in healthy participants and PD patients. In this study, 26 PD patients were assigned randomly to Neuroepo (n = 15) or placebo (n = 11) groups to test the tolerance of the drug. Outcome variables were neuropsychological tests and resting-state source qEEG at baseline and 6 months after administering the drug. Probabilistic Canonical Correlation Analysis was used to extract latent variables for the cognitive and for qEEG variables that shared a common source of variance. We obtained canonical variates for Cognition and qEEG with a correlation of 0.97. Linear Mixed Model analysis showed significant positive dependence of the canonical variate cognition on the dose and the confounder educational level (p = 0.003 and p = 0.02, respectively). Additionally, in the mediation equation, we found a positive dependence of Cognition with qEEG for (p = < 0.0001) and with dose (p = 0.006). Despite the small sample, both tests were powered over 89%. A combined mediation model showed that 66% of the total effect of the cognitive improvement was mediated by qEEG (p = 0.0001), with the remaining direct effect between dose and Cognition (p = 0.002), due to other causes. These results suggest that Neuroepo has a positive influence on Cognition in PD patients and that a large portion of this effect is mediated by brain mechanisms reflected in qEEG.
Collapse
Affiliation(s)
- Maria L. Bringas Vega
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- International Center of Neurological Restoration (CIREN), La Habana, Cuba
| | | | - Fuleah A. Razzaq
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Zhang
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Peng Ren
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Peng Gan
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Carlos Lopez Naranjo
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Marjan Jahanshahi
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jorge Bosch-Bayard
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada
| | - Pedro A. Valdes-Sosa
- Ministry of Education (MOE) Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
10
|
Rodriguez-Labrada R, Ortega-Sanchez R, Hernández Casaña P, Santos Morales O, Padrón-Estupiñan MDC, Batista-Nuñez M, Jiménez Rodríguez D, Canales-Ochoa N, Peña Acosta A, Medrano Montero J, Labrada Aguilera PE, Estupiñán Rodriguez A, Vazquez-Mojena Y, Almaguer Gotay D, Aymed-García J, García-García I, Torres Vega R, Viada González C, Valenzuela Silva CM, Silva Ricardo Y, Columbié Ximelis J, Tribin Rivero K, Valle Cabrera R, García-Rodriguez JC, Crombet Ramos T, Amaro-González D, Rodriguez-Obaya T, Velázquez-Pérez L. Erythropoietin in Spinocerebellar Ataxia Type 2: Feasibility and Proof-of-Principle Issues from a Randomized Controlled Study. Mov Disord 2022; 37:1516-1525. [PMID: 35607776 DOI: 10.1002/mds.29045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Several pieces of evidence have shown the neurotrophic effect of erythropoietin (EPO) and its introduction in the therapeutic practice of neurological diseases. However, its usefulness in the treatment of spinocerebellar ataxia type 2 (SCA2) has not been proven despite the fact that it is endogenously reduced in these patients. OBJECTIVE The study aims to investigate the safety, tolerability, and clinical effects of a nasally administered recombinant EPO in SCA2 patients. METHODS Thirty-four patients were enrolled in this double-blind, randomized, placebo-controlled, phase I-II clinical trial of the nasally administered human-recombinant EPO (NeuroEPO) for 6 months. The primary outcome was the change in the spinocerebellar ataxia functional index (SCAFI), while other motor, neuropsychological, and oculomotor measures were assessed. RESULTS The 6-month changes in SCAFI score were slightly higher in the patients allocated to NeuroEPO treatment than placebo in spite of the important placebo effect observed for this parameter. However, saccade latency was significantly decreased in the NeuroEPO group but not in placebo. The frequency and severity of adverse events were similar between both groups, without evidences of hematopoietic activity of the drug. CONCLUSIONS This study demonstrated the safety and tolerability of NeuroEPO in SCA2 patients after 6 months of treatments and suggested a small clinical effect of this drug on motor and cognitive abnormalities, but confirmatory studies are warranted. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Rodriguez-Labrada
- Center for Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba.,Cuban Centre for Neurosciences, Havana, Cuba
| | | | | | | | | | - Maricela Batista-Nuñez
- Otorhinolaryngology Department, "Octavio de la Concepción" Pediatric Hospital, Holguín, Cuba
| | | | - Nalia Canales-Ochoa
- Center for Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Arnoy Peña Acosta
- Center for Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | | | | | - Yaimee Vazquez-Mojena
- Center for Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba.,Cuban Centre for Neurosciences, Havana, Cuba
| | | | | | | | - Reydenis Torres Vega
- Center for Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | | | | | | | | | | | | | | | | | | | - Luis Velázquez-Pérez
- Center for Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba.,Cuban Academy of Sciences, Havana, Cuba
| |
Collapse
|
11
|
Ma Y, Zhou Z, Yang GY, Ding J, Wang X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front Pharmacol 2022; 13:743926. [PMID: 35250554 PMCID: PMC8892214 DOI: 10.3389/fphar.2022.743926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous studies explored the therapeutic effects of erythropoietin (EPO) on neurodegenerative diseases. Few studies provided comprehensive and latest knowledge of EPO treatment for ischemic stroke. In the present review, we introduced the structure, expression, function of EPO, and its receptors in the central nervous system. Furthermore, we comprehensively discussed EPO treatment in pre-clinical studies, clinical trials, and its therapeutic mechanisms including suppressing inflammation. Finally, advanced studies of the therapy of EPO derivatives in ischemic stroke were also discussed. We wish to provide valuable information on EPO and EPO derivatives’ treatment for ischemic stroke for basic researchers and clinicians to accelerate the process of their clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Risner ML, Pasini S, McGrady NR, Calkins DJ. Bax Contributes to Retinal Ganglion Cell Dendritic Degeneration During Glaucoma. Mol Neurobiol 2022; 59:1366-1380. [PMID: 34984584 PMCID: PMC8882107 DOI: 10.1007/s12035-021-02675-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
The BCL-2 (B-cell lymphoma-2) family of proteins contributes to mitochondrial-based apoptosis in models of neurodegeneration, including glaucomatous optic neuropathy (glaucoma), which degrades the retinal ganglion cell (RGC) axonal projection to the visual brain. Glaucoma is commonly associated with increased sensitivity to intraocular pressure (IOP) and involves a proximal program that leads to RGC dendritic pruning and a distal program that underlies axonopathy in the optic projection. While genetic deletion of the Bcl2-associated X protein (Bax-/-) prolongs RGC body survival in models of glaucoma and optic nerve trauma, axonopathy persists, thus raising the question of whether dendrites and the RGC light response are protected. Here, we used an inducible model of glaucoma in Bax-/- mice to determine if Bax contributes to RGC dendritic degeneration. We performed whole-cell recordings and dye filling in RGCs signaling light onset (αON-Sustained) and offset (αOFF-Sustained). We recovered RGC dendritic morphologies by confocal microscopy and analyzed dendritic arbor complexity and size. Additionally, we assessed RGC axon function by measuring anterograde axon transport of cholera toxin subunit B to the superior colliculus and behavioral spatial frequency threshold (i.e., spatial acuity). We found 1 month of IOP elevation did not cause significant RGC death in either WT or Bax-/- retinas. However, IOP elevation reduced dendritic arbor complexity of WT αON-Sustained and αOFF-Sustained RGCs. In the absence of Bax, αON- and αOFF-Sustained RGC dendritic arbors remained intact following IOP elevation. In addition to dendrites, neuroprotection by Bax-/- generalized to αON-and αOFF-Sustained RGC light- and current-evoked responses. Both anterograde axon transport and spatial acuity declined during IOP elevation in WT and Bax-/- mice. Collectively, our results indicate Bax contributes to RGC dendritic degeneration and distinguishes the proximal and distal neurodegenerative programs involved during the progression of glaucoma.
Collapse
Affiliation(s)
- Michael L Risner
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN, 37232, USA
| | - Silvia Pasini
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN, 37232, USA
| | - Nolan R McGrady
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN, 37232, USA
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Al-Onaizi MA, Thériault P, Lecordier S, Prefontaine P, Rivest S, ElAli A. Early monocyte modulation by the non-erythropoietic peptide ARA 290 decelerates AD-like pathology progression. Brain Behav Immun 2022; 99:363-382. [PMID: 34343617 DOI: 10.1016/j.bbi.2021.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/06/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) pathology is characterized by amyloid-β (Aβ) deposition and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Monocytes have been recently shown to play a major role in modulating Aβ pathology, and thereby have been pointed as potential therapeutic targets. However, the main challenge remains in identifying clinically relevant interventions that could modulate monocyte immune functions in absence of undesired off-target effects. Erythropoietin (EPO), a key regulator of erythrocyte production, has been shown to possess immunomodulatory potential and to provide beneficial effects in preclinical models of AD. However, the transition to use recombinant human EPO in clinical trials was hindered by unwanted erythropoietic effects that could lead to thrombosis. Here, we used a recently identified non-erythropoietic analogue of EPO, ARA 290, to evaluate its therapeutic potential in AD therapy. We first evaluated the effects of early systemic ARA 290 administration on AD-like pathology in an early-onset model, represented by young APP/PS1 mice. Our findings indicate that ARA 290 early treatment decelerated Aβ pathology progression in APP/PS1 mice while improving cognitive functions. ARA 290 potently increased the levels of total monocytes by specifically stimulating the generation of Ly6CLow patrolling subset, which are implicated in clearing Aβ from the cerebral vasculature, and subsequently reducing overall Aβ burden in the brain. Moreover, ARA 290 increased the levels of monocyte progenitors in the bone marrow. Using chimeric APP/PS1 mice in which Ly6CLow patrolling subset are selectively depleted, ARA 290 was inefficient in attenuating Aβ pathology and ameliorating cognitive functions in young animals. Interestingly, ARA 290 effects were compromised when delivered in a late-onset model, represented by aged APP1/PS1. In aged APP/PS1 mice in which AD-like pathology is at advanced stages, ARA 290 failed to reverse Aβ pathology and to increase the levels of circulating monocytes. Our study suggests that ARA 290 early systemic treatment could prevent AD-like progression via modulation of monocyte functions by specifically increasing the ratio of patrolling monocytes.
Collapse
Affiliation(s)
- Mohammed A Al-Onaizi
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Peter Thériault
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Paul Prefontaine
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
14
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Ma X, Shi Y. Whether erythropoietin can be a neuroprotective agent against premature brain injury: cellular mechanisms and clinical efficacy. Curr Neuropharmacol 2021; 20:611-629. [PMID: 34030616 DOI: 10.2174/1570159x19666210524154519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Preterm infants are at high risk of brain injury. With more understanding of the preterm brain injury's pathogenesis, neuroscientists are looking for more effective methods to prevent and treat it, among which erythropoietin (Epo) is considered as a prime candidate. This review tries to clarify the possible mechanisms of Epo in preterm neuroprotection and summarize updated evidence considering Epo as a pharmacological neuroprotective strategy in animal models and clinical trials. To date, various animal models have validated that Epo is an anti-apoptotic, anti-inflammatory, anti-oxidant, anti-excitotoxic, neurogenetic, erythropoietic, angiogenetic, and neurotrophic agent, thus preventing preterm brain injury. However, although the scientific rationale and preclinical data for Epo's neuroprotective effect are promising, when translated to bedside, the results vary in different studies, especially in its long-term efficacy. Based on existing evidence, it is still too early to recommend Epo as the standard treatment for preterm brain injury.
Collapse
Affiliation(s)
- Xueling Ma
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| |
Collapse
|
16
|
Coimbra-Costa D, Garzón F, Alva N, Pinto TCC, Aguado F, Torrella JR, Carbonell T, Rama R. Intermittent Hypobaric Hypoxic Preconditioning Provides Neuroprotection by Increasing Antioxidant Activity, Erythropoietin Expression and Preventing Apoptosis and Astrogliosis in the Brain of Adult Rats Exposed to Acute Severe Hypoxia. Int J Mol Sci 2021; 22:5272. [PMID: 34067817 PMCID: PMC8156215 DOI: 10.3390/ijms22105272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Exposure to intermittent hypoxia has been demonstrated to be an efficient tool for hypoxic preconditioning, preventing damage to cells and demonstrating therapeutic benefits. We aimed to evaluate the effects of respiratory intermittent hypobaric hypoxia (IHH) to avoid brain injury caused by exposure to acute severe hypoxia (ASH). METHODS biomarkers of oxidative damage, mitochondrial apoptosis, and transcriptional factors in response to hypoxia were assessed by Western blot and immunohistochemistry in brain tissue. Four groups of rats were used: (1) normoxic (NOR), (2) exposed to ASH (FiO2 7% for 6 h), (3) exposed to IHH for 3 h per day over 8 days at 460 mmHg, and (4) ASH preconditioned after IHH. RESULTS ASH animals underwent increased oxidative-stress-related parameters, an upregulation in apoptotic proteins and had astrocytes with phenotype forms compatible with severe diffuse reactive astrogliosis. These effects were attenuated and even prevented when the animals were preconditioned with IHH. These changes paralleled the inhibition of NF-κB expression and the increase of erythropoietin (EPO) levels in the brain. CONCLUSIONS IHH exerted neuroprotection against ASH-induced oxidative injury by preventing oxidative stress and inhibiting the apoptotic cascade, which was associated with NF-κB downregulation and EPO upregulation.
Collapse
Affiliation(s)
- Débora Coimbra-Costa
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Fernando Garzón
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Norma Alva
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Tiago C. C. Pinto
- Department of Neurophychiatry and Behavioural Science, Universidade Federal de Pernambuco, Av. da Engenharia, 186-298, Cidade Universitaria, Recife 50740-600, PE, Brazil;
| | - Fernando Aguado
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Joan Ramon Torrella
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Teresa Carbonell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Ramón Rama
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| |
Collapse
|
17
|
Wang X, Ali N, Lin CLG. Emerging role of glutamate in the pathophysiology and therapeutics of Gulf War illness. Life Sci 2021; 280:119609. [PMID: 33991547 DOI: 10.1016/j.lfs.2021.119609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Gulf War illness (GWI) is a chronic and multi-symptomatic disorder affecting veterans who served in the Gulf War. The commonly reported symptoms in GWI veterans include mood problems, cognitive impairment, muscle and joint pain, migraine/headache, chronic fatigue, gastrointestinal complaints, skin rashes, and respiratory problems. Neuroimaging studies have revealed significant brain structure alterations in GWI veterans, including subcortical atrophy, decreased volume of the hippocampus, reduced total grey and white matter, and increased brain white matter axial diffusivity. These brain changes may contribute to or increase the severities of the GWI-related symptoms. Epidemiological studies have revealed that neurotoxic exposures and stress may be significant contributors to the development of GWI. However, the mechanism underlying how the exposure and stress could contribute to the multi-symptomatic disorder of GWI remains unclear. We and others have demonstrated that rodent models exposed to GW-related agents and stress exhibited higher extracellular glutamate levels, as well as impaired structure and function of glutamatergic synapses. Restoration of the glutamatergic synapses ameliorated the GWI-related pathological and behavioral deficits. Moreover, recent studies showed that a low-glutamate diet reduced multiple symptoms in GWI veterans, suggesting an important role of the glutamatergic system in GWI. Currently, growing evidence has indicated that abnormal glutamate neurotransmission may contribute to the GWI symptoms. This review summarizes the potential roles of glutamate dyshomeostasis and dysfunction of the glutamatergic system in linking the initial cause to the multi-symptomatic outcomes in GWI and suggests the glutamatergic system as a therapeutic target for GWI.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Noor Ali
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Cytoprotective effects of erythropoietin: What about the lung? Biomed Pharmacother 2021; 139:111547. [PMID: 33831836 DOI: 10.1016/j.biopha.2021.111547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (Epo) is a pleiotropic cytokine, essential for erythropoiesis. Epo and its receptor (Epo-R) are produced by several tissues and it is now admitted that Epo displays other physiological functions than red blood cell synthesis. Indeed, Epo provides cytoprotective effects, which consist in prevention or fight against pathological processes. This perspective article reviews the various protective effects of Epo in several organs and tries to give a proof of concept about its effects in the lung. The tissue-protective effects of Epo could be a promising approach to limit the symptoms of acute and chronic lung diseases.
Collapse
|
19
|
Sun J, Li X, Gu X, Du H, Zhang G, Wu J, Wang F. Neuroprotective effect of hydrogen sulfide against glutamate-induced oxidative stress is mediated via the p53/glutaminase 2 pathway after traumatic brain injury. Aging (Albany NY) 2021; 13:7180-7189. [PMID: 33640879 PMCID: PMC7993660 DOI: 10.18632/aging.202575] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
Several reports suggest that hydrogen sulfide (H2S) exerts multiple biological and physiological effects on the pathogenesis of traumatic brain injury (TBI). However, the exact molecular mechanism involved in this effect is not yet fully known. In this study, we found that H2S alleviated TBI-induced motor and spatial memory deficits, brain pathology, and brain edema. Moreover, sodium hydrosulfide (NaHS), an H2S donor, treatment markedly increased the expression of Bcl-2, while inhibited the expression of Bax and Cleaved caspase-3 in TBI-challenged rats. Tunnel staining also demonstrated these results. Treatment with NaHS significantly reduced the glutamate and glutaminase 2 (GLS-2) protein levels, and glutamate-mediated oxidative stress in TBI-challenged rats. Furthermore, we demonstrated that H2S treatment inhibited glutamate-mediated oxidative stress through the p53/GLS-2 pathway. Therefore, our results suggested that H2S protects brain injury induced by TBI through modulation of the glutamate-mediated oxidative stress in the p53/GLS-2 pathway-dependent manner.
Collapse
Affiliation(s)
- Jianping Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Xiaoyu Li
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Xiaoyu Gu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Hailong Du
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| |
Collapse
|
20
|
Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13120424. [PMID: 33255969 PMCID: PMC7760199 DOI: 10.3390/ph13120424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence in the literature demonstrates the pleiotropic effects of the administration of recombinant human erythropoietin (rhEPO) and its molecular variants in different tissues and organs, including the brain. Some of these reports suggest that the chemical properties of this molecule by itself or in combination with other agents (e.g., growth factors) could provide the necessary pharmacological characteristics to be considered a potential protective agent in neurological disorders such as Alzheimer’s disease (AD). AD is a degenerative disorder of the brain, characterized by an aberrant accumulation of amyloid β (Aβ) and hyperphosphorylated tau (tau-p) proteins in the extracellular and intracellular space, respectively, leading to inflammation, oxidative stress, excitotoxicity, and other neuronal alterations that compromise cell viability, causing neurodegeneration in the hippocampus and the cerebral cortex. Unfortunately, to date, it lacks an effective therapeutic strategy for its treatment. Therefore, in this review, we analyze the evidence regarding the effects of exogenous EPOs (rhEPO and its molecular variants) in several in vivo and in vitro Aβ and tau-p models of AD-type neurodegeneration, to be considered as an alternative protective treatment to this condition. Particularly, we focus on analyzing the differential effect of molecular variants of rhEPO when changes in doses, route of administration, duration of treatment or application times, are evaluated for the improved cellular alterations generated in this disease. This narrative review shows the evidence of the effectiveness of the exogenous EPOs as potential therapeutic molecules, focused on the mechanisms that establish cellular damage and clinical manifestation in the AD.
Collapse
Affiliation(s)
- José J. Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Martha C. Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM-Juriquilla, Querétaro 76230, Mexico;
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Ciudad de Mexico 07360, Mexico;
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| | - Carlos Beas-Zárate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| |
Collapse
|
21
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
22
|
Gubareva VO, Pazhinsky AL, Lugovskoy SS, Dubovtsova EY, Vain D, Pobeda AS, Pasenov KN. Pharmacological correction of morphofunctional retinal injury using 11-amino acid fragment of darbepoetin in the experiment. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.38730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The retinoprotective effect of the 11-amino acid fragment of darbepoetin PRK-002 on the models of hypertensive retinal angiopathy and hypertensive neuroretinopathy in Wistar rats was investigated in comparison with carbamylated darbepoetin and sulodexide.
Materials and methods: The protective effects of the pharmacological agents were assessed using the following criteria: a semi-quantitative assessment of changes in the eye fundus when performing ophthalmoscopy, the retinal blood flow, the b/a coefficient, eNOs expression in retinal vessels, specific number of neuronal nuclei in the inner nuclear layer, and p53 expression in the retina.
Results and discussion: A pronounced protective effect, exceeding sulodexide at a dose of 150 LRU/kg and carbamylated darbepoetin at a dose of 300 μg/kg when correcting retinal angiopathy was observed in PRK-002 at a dose of 4 µg/kg, which expressed in adjustment of the retinal vessels’ calibers, removing retinal arterio-venous crossings, reaching the target levels of the retinal microcirculation, the b/a coefficient, and the restoration of eNOs expression in the endothelium of retinal vessels. PRK-002 at a dose of 4 µg/kg has a pronounced neuroprotective effect comparable to carbamylated darbepoetin at a dose of 300 µg/kg in correction of hypertensive neuroretinopathy, which expressed in the normalization of the fundus image, reaching the b/a target values, the specific number of neuronal nuclei in the inner nuclear layer, inhibition of p53 expression in the neurons of the inner nuclear and ganglionic layers.
Conclusion: The study revealed angio- and neuroprotective activity of the 11-amino acid fragment of darbepoetin PRK-002 in correction of retinal injury formed on the background of hypertension.
Collapse
|
23
|
Roseti C, Cifelli P, Ruffolo G, Barbieri E, Guescini M, Esposito V, Di Gennaro G, Limatola C, Giovannelli A, Aronica E, Palma E. Erythropoietin Increases GABA A Currents in Human Cortex from TLE Patients. Neuroscience 2019; 439:153-162. [PMID: 31047977 DOI: 10.1016/j.neuroscience.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/15/2022]
Abstract
Erythropoietin (EPO) is a hematopoietic growth factor that has an important role in the erythropoiesis. EPO and its receptor (EPO-R) are expressed all over in the mammalian brain. Furthermore, it has been reported that EPO may exert neuroprotective effect in animal models of brain disorders as ischemia and epilepsy. Here, we investigate whether EPO could modulate the GABA-evoked currents (IGABA) in both human epileptic and non-epileptic control brain tissues. Therefore, we transplanted in Xenopus oocytes cell membranes obtained from autoptic and surgical brain tissues (cortex) of seven temporal lope epilepsy (TLE) patients and of five control patients. Two microelectrodes voltage-clamp technique has been used to record IGABA. Moreover, qRT-PCR assay was performed in the same human tissues to quantify the relative gene expression levels of EPO/EPO-R. To further confirm experiments in oocytes, we performed additional experiments using patch-clamp recording in slices obtained from rat cerebellum. We show that exposure to EPO significantly increased the amplitude of the IGABA in all the patients analyzed. No differences in the expression of EPO and EPO-R in both TLE and control patients have been found. Notably, the increase of IGABA has been recorded also in rat cerebellar slices. Our findings show a new modulatory action of EPO on GABAA receptors (GABAA-Rs). This effect could be relevant to balance the GABAergic dysfunction in human TLE. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
| | - Pierangelo Cifelli
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy; IRCCS San Raffaele Pisana, Rome, Italy
| | - Elena Barbieri
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | - Cristina Limatola
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy; IRCCS Neuromed, Pozzilli, (IS), Italy
| | - Aldo Giovannelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| | - Eleonora Palma
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy.
| |
Collapse
|
24
|
Sprick JD, Mallet RT, Przyklenk K, Rickards CA. Ischaemic and hypoxic conditioning: potential for protection of vital organs. Exp Physiol 2019; 104:278-294. [PMID: 30597638 DOI: 10.1113/ep087122] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? Remote ischaemic preconditioning (RIPC) and hypoxic preconditioning as novel therapeutic approaches for cardiac and neuroprotection. What advances does it highlight? There is improved understanding of mechanisms and signalling pathways associated with ischaemic and hypoxic preconditioning, and potential pitfalls with application of these therapies to clinical trials have been identified. Novel adaptations of preconditioning paradigms have also been developed, including intermittent hypoxia training, RIPC training and RIPC-exercise, extending their utility to chronic settings. ABSTRACT Myocardial infarction and stroke remain leading causes of death worldwide, despite extensive resources directed towards developing effective treatments. In this Symposium Report we highlight the potential applications of intermittent ischaemic and hypoxic conditioning protocols to combat the deleterious consequences of heart and brain ischaemia. Insights into mechanisms underlying the protective effects of intermittent hypoxia training are discussed, including the activation of hypoxia-inducible factor-1 and Nrf2 transcription factors, synthesis of antioxidant and ATP-generating enzymes, and a shift in microglia from pro- to anti-inflammatory phenotypes. Although there is little argument regarding the efficacy of remote ischaemic preconditioning (RIPC) in pre-clinical models, this strategy has not consistently translated into the clinical arena. This lack of translation may be related to the patient populations targeted thus far, and the anaesthetic regimen used in two of the major RIPC clinical trials. Additionally, we do not fully understand the mechanism through which RIPC protects the vital organs, and co-morbidities (e.g. hypercholesterolemia, diabetes) may interfere with its efficacy. Finally, novel adaptations have been made to extend RIPC to more chronic settings. One adaptation is RIPC-exercise (RIPC-X), an innovative paradigm that applies cyclical RIPC to blood flow restriction exercise (BFRE). Recent findings suggest that this novel exercise modality attenuates the exaggerated haemodynamic responses that may limit the use of conventional BFRE in some clinical settings. Collectively, intermittent ischaemic and hypoxic conditioning paradigms remain an exciting frontier for the protection against ischaemic injuries.
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA.,Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| |
Collapse
|
25
|
Rama R, Garzón F, Rodríguez-Cruz Y, Maurice T, García-Rodríguez JC. Neuroprotective effect of Neuro-EPO in neurodegenerative diseases: "Alea jacta est". Neural Regen Res 2019; 14:1519-1521. [PMID: 31089047 PMCID: PMC6557108 DOI: 10.4103/1673-5374.255968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ramón Rama
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Fernando Garzón
- Department of Animal Health, University of Nariño, Pasto, Nariño, Colombia
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | | |
Collapse
|