1
|
Cely-Veloza W, Kato MJ, Coy-Barrera E. Quinolizidine-Type Alkaloids: Chemodiversity, Occurrence, and Bioactivity. ACS OMEGA 2023; 8:27862-27893. [PMID: 37576649 PMCID: PMC10413377 DOI: 10.1021/acsomega.3c02179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Quinolizidine alkaloids (QAs) are nitrogen-containing compounds produced naturally as specialized metabolites distributed in plants and animals (e.g., frogs, sponges). The present review compiles the available information on the chemical diversity and biological activity of QAs reported during the last three decades. So far, 397 QAs have been isolated, gathering 20 different representative classes, including the most common such as matrine (13.6%), lupanine (9.8%), anagyrine (4.0%), sparteine (5.3%), cytisine (6.5%), tetrahydrocytisine (4.3%), lupinine (12.1%), macrocyclic bisquinolizidine (9.3%), biphenylquinolizidine lactone (7.1%), dimeric (7.1%), and other less known QAs (20.9%), which include several structural patterns of QAs. A detailed survey of the reported information about the bioactivities of these compounds indicated their potential as cytotoxic, antiviral, antimicrobial, insecticidal, anti-inflammatory, antimalarial, and antiacetylcholinesterase compounds, involving favorable putative drug-likeness scores. In this regard, research progress on the structural and biological/pharmacological diversity of QAs requires further studies oriented on expanding the chemical space to find bioactive scaffolds based on QAs for pharmacological and agrochemical applications.
Collapse
Affiliation(s)
- Willy Cely-Veloza
- Bioorganic
Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia
| | - Massuo J. Kato
- Institute
of Chemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Ericsson Coy-Barrera
- Bioorganic
Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
2
|
(S)-N1,N3-Dibenzyl-1-cyclohexyl-N1,N3-bis((R)-1-phenylethyl)propane-1,3-diamine. MOLBANK 2023. [DOI: 10.3390/m1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
(S)-N1,N3-dibenzyl-1-cyclohexyl-N1,N3-bis((R)-1-phenylethyl)propane-1,3-diamine was prepared in good yield by the reduction of the corresponding amide, which was obtained by the addition of a chiral lithium amide to an α,β-unsaturated ester. The target compound was fully characterized by NMR (1H and 13C), high-resolution mass spectrometry and polarimetry.
Collapse
|
3
|
Castillo C, Bravo-Arrepol G, Wendt A, Saez-Orellana F, Millar C, Burgos CF, Gavilán J, Pacheco C, Ahumada-Rudolph R, Napiórkowska M, Pérez C, Becerra J, Fuentealba J, Cabrera-Pardo JR. Neuroprotective Properties of Eudesmin on a Cellular Model of Amyloid-β Peptide Toxicity. J Alzheimers Dis 2023; 94:S97-S108. [PMID: 36463456 PMCID: PMC10473145 DOI: 10.3233/jad-220935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and memory loss. One of the hallmarks in AD is amyloid-β peptide (Aβ) accumulation, where the soluble oligomers of Aβ (AβOs) are the most toxic species, deteriorating the synaptic function, membrane integrity, and neuronal structures, which ultimately lead to apoptosis. Currently, there are no drugs to arrest AD progression, and current scientific efforts are focused on searching for novel leads to control this disease. Lignans are compounds extracted from conifers and have several medicinal properties. Eudesmin (Eu) is an extractable lignan from the wood of Araucaria araucana, a native tree from Chile. This metabolite has shown a range of biological properties, including the ability to control inflammation and antibacterial effects. OBJECTIVE In this study, the neuroprotective abilities of Eu on synaptic failure induced by AβOs were analyzed. METHODS Using neuronal models, PC12 cells, and in silico simulations we evaluated the neuroprotective effect of Eu (30 nM) against the toxicity induced by AβOs. RESULTS In primary cultures from mouse hippocampus, Eu preserved the synaptic structure against AβOs toxicity, maintaining stable levels of the presynaptic protein SV2 at the same concentration. Eu also averted synapsis failure from the AβOs toxicity by sustaining the frequencies of cytosolic Ca2+ transients. Finally, we found that Eu (30 nM) interacts with the Aβ aggregation process inducing a decrease in AβOs toxicity, suggesting an alternative mechanism to explain the neuroprotective activity of Eu. CONCLUSION We believe that Eu represents a novel lead that reduces the Aβ toxicity, opening new research venues for lignans as neuroprotective agents.
Collapse
Affiliation(s)
- Carolina Castillo
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gastón Bravo-Arrepol
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
| | - Aline Wendt
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Saez-Orellana
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Camila Millar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carla Pacheco
- Departamento de Bioquímica Clínica, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Ramón Ahumada-Rudolph
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Claudia Pérez
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - José Becerra
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| |
Collapse
|
4
|
Protection against Amyloid-β Oligomer Neurotoxicity by Small Molecules with Antioxidative Properties: Potential for the Prevention of Alzheimer’s Disease Dementia. Antioxidants (Basel) 2022; 11:antiox11010132. [PMID: 35052635 PMCID: PMC8773221 DOI: 10.3390/antiox11010132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Soluble oligomeric assemblies of amyloid β-protein (Aβ), called Aβ oligomers (AβOs), have been recognized as primary pathogenetic factors in the molecular pathology of Alzheimer’s disease (AD). AβOs exert neurotoxicity and synaptotoxicity and play a critical role in the pathological progression of AD by aggravating oxidative and synaptic disturbances and tau abnormalities. As such, they are important therapeutic targets. From a therapeutic standpoint, it is not only important to clear AβOs or prevent their formation, it is also beneficial to reduce their neurotoxicity. In this regard, recent studies have reported that small molecules, most with antioxidative properties, show promise as therapeutic agents for reducing the neurotoxicity of AβOs. In this mini-review, we briefly review the significance of AβOs and oxidative stress in AD and summarize studies on small molecules with AβO-neurotoxicity-reducing effects. We also discuss mechanisms underlying the effects of these compounds against AβO neurotoxicity as well as their potential as drug candidates for the prevention and treatment of AD.
Collapse
|
5
|
Godoy PA, Mennickent D, Cuchillo-Ibáñez I, Ramírez-Molina O, Silva-Grecchi T, Panes-Fernández J, Castro P, Sáez-Valero J, Fuentealba J. Increased P2×2 receptors induced by amyloid-β peptide participates in the neurotoxicity in alzheimer's disease. Biomed Pharmacother 2021; 142:111968. [PMID: 34343896 DOI: 10.1016/j.biopha.2021.111968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023] Open
Abstract
Amyloid beta peptide (Aβ) is tightly associated with the physiopathology of Alzheimer's Disease (AD) as one of the most important factors in the evolution of the pathology. In this context, we previously reported that Aβ increases the expression of ionotropic purinergic receptor 2 (P2×2R). However, its role on the cellular and molecular Aβ toxicity is unknown, especially in human brain of AD patients. Using cellular and molecular approaches in hippocampal neurons, PC12 cells, and human brain samples of patients with AD, we evaluated the participation of P2×2R in the physiopathology of AD. Here, we reported that Aβ oligomers (Aβo) increased P2×2 levels in mice hippocampal neurons, and that this receptor increases at late Braak stages of AD patients. Aβo also increases the colocalization of APP with Rab5, an early endosomes marker, and decreased the nuclear/cytoplasmic ratio of Fe65 and PGC-1α immunoreactivity. The overexpression in PC12 cells of P2×2a, but not P2×2b, replicated these changes in Fe65 and PGC-1α; however, both overexpressed isoforms increased levels of Aβ. Taken together, these data suggest that P2×2 is upregulated in AD and it could be a key potentiator of the physiopathology of Aβ. Our results point to a possible participation in a toxic cycle that increases Aβ production, Ca2+ overload, and a decrease of PGC-1α. These novel findings put the P2×2R as a key novel pharmacological target to develop new therapeutic strategies to treat Alzheimer's Disease.
Collapse
Affiliation(s)
- Pamela A Godoy
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Daniela Mennickent
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550 Alicante, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Oscar Ramírez-Molina
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Tiare Silva-Grecchi
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jessica Panes-Fernández
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550 Alicante, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jorge Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
6
|
Li GH, Fang KL, Yang K, Cheng XP, Wang XN, Shen T, Lou HX. Thesium chinense Turcz.: An ethnomedical, phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113950. [PMID: 33610713 DOI: 10.1016/j.jep.2021.113950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thesium chinense Turcz. has been used to treat mastitis, pulmonitis, tonsillitis, iaryngopharyngitis and upper respiratory tract infections in the indigenous medicine of China for a long history. Presently, several pharmaceutics prepared by this medical herb have been clinically used for the therapy of infectious diseases. AIM OF THE REVIEW This review aims to comprehensively summarize the current researches on the ethnomedical, phytochemical and pharmacological aspects of T. chinense, and discuss their possible opportunities for the future research. MATERIALS AND METHODS Extensive database searches, including Web of Science, SciFinder, Google Scholar and China Knowledge Resource Integrated, were performed using keywords such as 'Thesium chinense', 'Bai Rui Cao', and their chemical constituents. In addition, local classic herbal literature on ethnopharmacology and relevant textbooks were consulted to provide a comprehensive survey of this ethnomedicine. RESULTS Thirty four chemical constituents, including flavonoids, alkaloids, and terpenoids, have been identified from T. chinense. Of which, flavonoids are the predominant and characteristic constituents. The crude extracts, the purified constituents, and commercial available pharmaceutics have displayed diverse in vitro and in vivo pharmacological functions (e.g. anti-inflammation, antimicrobial activity, analgesic effect, hepaprotection), and are particularly useful as a potential therapeutic agent against inflammation-related diseases. CONCLUSIONS T. chinense is an important ethnomedical medicine and possesses a satisfying effect for treating inflammation, microbial infection, and upper respiratory diseases. It has received plenty of researches on its phytochemical and pharmacological aspects since 1970s. These findings definitely establish the link between chemical composition and pharmacological application, and support the ethnomedical use of T. chinense in the indigenous medicine of China. However, chemical composition of this plant and the molecular mechanisms of purified constituents have not been comprehensively investigated, and thus the trace constituents and the therapeutic targets of bioactive constituents deserve a further exploration. Collectively, the researchers should pay more attention to a better understanding and application of this ethnomedical plant.
Collapse
Affiliation(s)
- Guo-Hui Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, People's Republic of China
| | - Kai-Li Fang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Kang Yang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xin-Ping Cheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|