1
|
Clifford JO, Anand S, Tarpin-Bernard F, Bergeron MF, Ashford CB, Bayley PJ, Ashford JW. Episodic memory assessment: effects of sex and age on performance and response time during a continuous recognition task. Front Hum Neurosci 2024; 18:1304221. [PMID: 38638807 PMCID: PMC11024362 DOI: 10.3389/fnhum.2024.1304221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Continuous recognition tasks (CRTs) assess episodic memory (EM), the central functional disturbance in Alzheimer's disease and several related disorders. The online MemTrax computerized CRT provides a platform for screening and assessment that is engaging and can be repeated frequently. MemTrax presents complex visual stimuli, which require complex involvement of the lateral and medial temporal lobes and can be completed in less than 2 min. Results include number of correct recognitions (HITs), recognition failures (MISSes = 1-HITs), correct rejections (CRs), false alarms (FAs = 1-CRs), total correct (TC = HITs + CRs), and response times (RTs) for each HIT and FA. Prior analyses of MemTrax CRT data show no effects of sex but an effect of age on performance. The number of HITs corresponds to faster RT-HITs more closely than TC, and CRs do not relate to RT-HITs. RT-HITs show a typical skewed distribution, and cumulative RT-HITs fit a negative survival curve (RevEx). Thus, this study aimed to define precisely the effects of sex and age on HITS, CRs, RT-HITs, and the dynamics of RTs in an engaged population. Methods MemTrax CRT online data on 18,255 individuals was analyzed for sex, age, and distributions of HITs, CRs, MISSes, FAs, TC, and relationships to both RT-HITs and RT-FAs. Results HITs corresponded more closely to RT-HITs than did TC because CRs did not relate to RT-HITs. RT-FAs had a broader distribution than RT-HITs and were faster than RT-HITs in about half of the sample, slower in the other half. Performance metrics for men and women were the same. HITs declined with age as RT-HITs increased. CRs also decreased with age and RT-FAs increased, but with no correlation. The group over aged 50 years had RT-HITs distributions slower than under 50 years. For both age ranges, the RevEx model explained more than 99% of the variance in RT-HITs. Discussion The dichotomy of HITs and CRs suggests opposing cognitive strategies: (1) less certainty about recognitions, in association with slower RT-HITs and lower HIT percentages suggests recognition difficulty, leading to more MISSes, and (2) decreased CRs (more FAs) but faster RTs to HITs and FAs, suggesting overly quick decisions leading to errors. MemTrax CRT performance provides an indication of EM (HITs and RT-HITs may relate to function of the temporal lobe), executive function (FAs may relate to function of the frontal lobe), processing speed (RTs), cognitive ability, and age-related changes. This CRT provides potential clinical screening utility for early Alzheimer's disease and other conditions affecting EM, other cognitive functions, and more accurate impairment assessment to track changes over time.
Collapse
Affiliation(s)
- James O. Clifford
- Department of Psychology, College of San Mateo, San Mateo, CA, United States
| | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States
| | | | - Michael F. Bergeron
- Department of Health Sciences, University of Hartford, West Hartford, CT, United States
| | - Curtis B. Ashford
- MemTrax, LLC, Redwood City, CA, United States
- CogniFit, LLC, Redwood City, CA, United States
| | - Peter J. Bayley
- VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States
| | - John Wesson Ashford
- VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States
| |
Collapse
|
2
|
Del Percio C, Lopez S, Noce G, Lizio R, Tucci F, Soricelli A, Ferri R, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Marizzoni M, Güntekin B, Yener G, Stocchi F, Vacca L, Frisoni GB, Babiloni C. What a Single Electroencephalographic (EEG) Channel Can Tell us About Alzheimer's Disease Patients With Mild Cognitive Impairment. Clin EEG Neurosci 2023; 54:21-35. [PMID: 36413420 DOI: 10.1177/15500594221125033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abnormalities in cortical sources of resting-state eyes closed electroencephalographic (rsEEG) rhythms recorded by hospital settings (10-20 montage) with 19 scalp electrodes characterized Alzheimer's disease (AD) from preclinical to dementia stages. An intriguing rsEEG application is the monitoring and evaluation of AD progression in large populations with few electrodes in low-cost devices. Here we evaluated whether the above-mentioned abnormalities can be observed from fewer scalp electrodes in patients with mild cognitive impairment due to AD (ADMCI). Clinical and rsEEG data acquired in hospital settings (10-20 montage) from 75 ADMCI participants and 70 age-, education-, and sex-matched normal elderly controls (Nold) were available in an Italian-Turkish archive (PDWAVES Consortium; www.pdwaves.eu). Standard spectral fast fourier transform (FFT) analysis of rsEEG data for individual delta, theta, and alpha frequency bands was computed from 6 monopolar scalp electrodes to derive bipolar C3-P3, C4-P4, P3-O1, and P4-O2 markers. The ADMCI group showed increased delta and decreased alpha power density at the C3-P3, C4-P4, P3-O1, and P4-O2 bipolar channels compared to the Nold group. Increased theta power density for ADMCI patients was observed only at the C3-P3 bipolar channel. Best classification accuracy between the ADMCI and Nold individuals reached 81% (area under the receiver operating characteristic curve) using Alpha2/Theta power density computed at the C3-P3 bipolar channel. Standard rsEEG power density computed from six posterior bipolar channels characterized ADMCI status. These results may pave the way toward diffuse clinical applications in health monitoring of dementia using low-cost EEG systems with a strict number of electrodes in lower- and middle-income countries.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | | | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), 27212Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), 27212Università di Genova, Italy
| | - Francesco Famà
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, 9311Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, 9311Sapienza University of Rome, Rome, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, 218502Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., 218502Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and 27212University of Geneva, Geneva, Switzerland
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| |
Collapse
|
3
|
What a single electroencephalographic (EEG) channel can tell us about patients with dementia due to Alzheimer's disease. Int J Psychophysiol 2022; 182:169-181. [DOI: 10.1016/j.ijpsycho.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
4
|
de Mélo Silva Júnior ML, Diniz PRB, de Souza Vilanova MV, Basto GPT, Valença MM. Brain ventricles, CSF and cognition: a narrative review. Psychogeriatrics 2022; 22:544-552. [PMID: 35488797 DOI: 10.1111/psyg.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The brain ventricles are structures that have been related to cognition since antiquity. They are essential components in the development and maintenance of brain functions. The aging process runs with the enlargement of ventricles and is related to a less selective blood-cerebrospinal fluid barrier and then a more toxic cerebrospinal fluid environment. The study of brain ventricles as a biological marker of aging is promissing because they are structures easily identified in neuroimaging studies, present good inter-rater reliability, and measures of them can identify brain atrophy earlier than cortical structures. The ventricular system also plays roles in the development of dementia, since dysfunction in the clearance of beta-amyloid protein is a key mechanism in sporadic Alzheimer's disease. The morphometric and volumetric studies of the brain ventricles can help to distinguish between healthy elderly and persons with mild cognitive impairment (MCI) and dementia. Brain ventricle data may contribute to the appropriate allocation of individuals in groups at higher risk for MCI-dementia progression in clinical trials and to measuring therapeutic responses in these studies, as well as providing differential diagnosis, such as normal pressure hydrocephalus. Here, we reviewed the pathophysiology of healthy aging and cognitive decline, focusing on the role of the choroid plexus and brain ventricles in this process.
Collapse
Affiliation(s)
- Mário Luciano de Mélo Silva Júnior
- Medical School, Universidade Federal de Pernambuco, Recife, Brazil.,Medical School, Centro Universitário Maurício de Nassau, Recife, Brazil.,Neurology Unit, Hospital da Restauração, Recife, Brazil
| | | | | | | | | |
Collapse
|
5
|
Lorenzini L, Ingala S, Wink AM, Kuijer JPA, Wottschel V, Dijsselhof M, Sudre CH, Haller S, Molinuevo JL, Gispert JD, Cash DM, Thomas DL, Vos SB, Prados F, Petr J, Wolz R, Palombit A, Schwarz AJ, Chételat G, Payoux P, Di Perri C, Wardlaw JM, Frisoni GB, Foley C, Fox NC, Ritchie C, Pernet C, Waldman A, Barkhof F, Mutsaerts HJMM. The Open-Access European Prevention of Alzheimer's Dementia (EPAD) MRI dataset and processing workflow. Neuroimage Clin 2022; 35:103106. [PMID: 35839659 PMCID: PMC9421463 DOI: 10.1016/j.nicl.2022.103106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022]
Abstract
The European Prevention of Alzheimer Dementia (EPAD) is a multi-center study that aims to characterize the preclinical and prodromal stages of Alzheimer's Disease. The EPAD imaging dataset includes core (3D T1w, 3D FLAIR) and advanced (ASL, diffusion MRI, and resting-state fMRI) MRI sequences. Here, we give an overview of the semi-automatic multimodal and multisite pipeline that we developed to curate, preprocess, quality control (QC), and compute image-derived phenotypes (IDPs) from the EPAD MRI dataset. This pipeline harmonizes DICOM data structure across sites and performs standardized MRI preprocessing steps. A semi-automated MRI QC procedure was implemented to visualize and flag MRI images next to site-specific distributions of QC features - i.e. metrics that represent image quality. The value of each of these QC features was evaluated through comparison with visual assessment and step-wise parameter selection based on logistic regression. IDPs were computed from 5 different MRI modalities and their sanity and potential clinical relevance were ascertained by assessing their relationship with biological markers of aging and dementia. The EPAD v1500.0 data release encompassed core structural scans from 1356 participants 842 fMRI, 831 dMRI, and 858 ASL scans. From 1356 3D T1w images, we identified 17 images with poor quality and 61 with moderate quality. Five QC features - Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Coefficient of Joint Variation (CJV), Foreground-Background energy Ratio (FBER), and Image Quality Rate (IQR) - were selected as the most informative on image quality by comparison with visual assessment. The multimodal IDPs showed greater impairment in associations with age and dementia biomarkers, demonstrating the potential of the dataset for future clinical analyses.
Collapse
Affiliation(s)
- Luigi Lorenzini
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
| | - Silvia Ingala
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Alle Meije Wink
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Joost P A Kuijer
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Viktor Wottschel
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mathijs Dijsselhof
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Centre for Medical Image Computing, University College London, London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Sven Haller
- CIMC - Centre d'Imagerie Médicale de Cornavin, Place de Cornavin 18, 1201 Genève, Switzerland; Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; H. Lundbeck A/S, 2500 Valby, Denmark
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute, University College of London, London, UK
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology London, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London, London, UK; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology London, UK
| | - Ferran Prados
- Nuclear Magnetic Resonance Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London, London, United Kingdom; e-Health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Jan Petr
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Robin Wolz
- IXICO, London, UK; Imperial College London, London, UK
| | | | | | - Gaël Chételat
- Université de Normandie, Unicaen, Inserm, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood-and-Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Pierre Payoux
- Department of Nuclear Medicine, Toulouse CHU, Purpan University Hospital, Toulouse, France; Toulouse NeuroImaging Center, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Carol Di Perri
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at Edinburgh, University of Edinburgh, UK
| | - Giovanni B Frisoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Craig Ritchie
- Centre for Dementia Prevention, The University of Edinburgh, Scotland, UK
| | - Cyril Pernet
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Adam Waldman
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; Department of Brain Sciences, Imperial College London, London, UK
| | - Frederik Barkhof
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Institute of Neurology and Healthcare Engineering, University College London, London, UK; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Henk J M M Mutsaerts
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Babiloni C, Ferri R, Noce G, Lizio R, Lopez S, Lorenzo I, Panzavolta A, Soricelli A, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Cipollini V, Marizzoni M, Güntekin B, Aktürk T, Hanoğlu L, Yener G, Özbek Y, Stocchi F, Vacca L, Frisoni GB, Del Percio C. Abnormalities of Cortical Sources of Resting State Alpha Electroencephalographic Rhythms are Related to Education Attainment in Cognitively Unimpaired Seniors and Patients with Alzheimer's Disease and Amnesic Mild Cognitive Impairment. Cereb Cortex 2021; 31:2220-2237. [PMID: 33251540 DOI: 10.1093/cercor/bhaa356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
In normal old (Nold) and Alzheimer's disease (AD) persons, a high cognitive reserve (CR) makes them more resistant and resilient to brain neuropathology and neurodegeneration. Here, we tested whether these effects may affect neurophysiological oscillatory mechanisms generating dominant resting state electroencephalographic (rsEEG) alpha rhythms in Nold and patients with mild cognitive impairment (MCI) due to AD (ADMCI). Data in 60 Nold and 70 ADMCI participants, stratified in higher (Edu+) and lower (Edu-) educational attainment subgroups, were available in an Italian-Turkish archive. The subgroups were matched for age, gender, and education. RsEEG cortical sources were estimated by eLORETA freeware. As compared to the Nold-Edu- subgroup, the Nold-Edu+ subgroup showed greater alpha source activations topographically widespread. On the contrary, in relation to the ADMCI-Edu- subgroup, the ADMCI-Edu+ subgroup displayed lower alpha source activations topographically widespread. Furthermore, the 2 ADMCI subgroups had matched cerebrospinal AD diagnostic biomarkers, brain gray-white matter measures, and neuropsychological scores. The current findings suggest that a high CR may be related to changes in rsEEG alpha rhythms in Nold and ADMCI persons. These changes may underlie neuroprotective effects in Nold seniors and subtend functional compensatory mechanisms unrelated to brain structure alterations in ADMCI patients.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,San Raffaele of Cassino, Cassino, Italy
| | | | | | | | - Susanna Lopez
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | | | - Andrea Panzavolta
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Virginia Cipollini
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Yağmur Özbek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Payoux P, Ranjeva JP. Contributions of PET and MRI imaging in the evaluation of CNS drugs in human neurodegenerative diseases. Therapie 2020; 76:121-126. [PMID: 33563477 DOI: 10.1016/j.therap.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022]
Abstract
This manuscript reviews the contributions of the neuroimaging methods including PET, conventional and advanced MRI methods to monitor the effect of new disease modifying drugs in neurodegenerative diseases. It now seems obvious that in many pathologies these two techniques are more and more complementary.
Collapse
Affiliation(s)
- Pierre Payoux
- Inserm, UPS, ToNIC, Nuclear Medicine Department, Toulouse NeuroImaging Center, University Hospital of Toulouse France, Université de Toulouse, 31000 Toulouse, France.
| | - Jean-Philippe Ranjeva
- CNRS, CRMBM, Aix-Marseille University, 13385 Marseille, France; CEMEREM, AP-HM, University Hospital Timone, 13385 Marseille, France
| |
Collapse
|
8
|
Babiloni C, Lopez S, Del Percio C, Noce G, Pascarelli MT, Lizio R, Teipel SJ, González-Escamilla G, Bakardjian H, George N, Cavedo E, Lista S, Chiesa PA, Vergallo A, Lemercier P, Spinelli G, Grothe MJ, Potier MC, Stocchi F, Ferri R, Habert MO, Fraga FJ, Dubois B, Hampel H. Resting-state posterior alpha rhythms are abnormal in subjective memory complaint seniors with preclinical Alzheimer's neuropathology and high education level: the INSIGHT-preAD study. Neurobiol Aging 2020; 90:43-59. [DOI: 10.1016/j.neurobiolaging.2020.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 01/05/2023]
|
9
|
Perrotte M, Haddad M, Le Page A, Frost EH, Fulöp T, Ramassamy C. Profile of pathogenic proteins in total circulating extracellular vesicles in mild cognitive impairment and during the progression of Alzheimer's disease. Neurobiol Aging 2019; 86:102-111. [PMID: 31883770 DOI: 10.1016/j.neurobiolaging.2019.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023]
Abstract
Accumulating evidence suggests that the propagation of hyperphosphorylation of tau protein and the amyloid-β peptide can be mediated by extracellular vesicles (EVs) and be associated with the onset and the progression of Alzheimer's disease (AD). As EVs may transfer between the brain and the blood, we have thus hypothesized that the total plasma EVs (pEVs) may contain potential markers to predict the mild cognitive impairment (MCI) and AD progression. We have thus quantified AD-related proteins in isolated pEVs from controls, MCI and AD subjects. In pEVs, we observed early changes of total tau (tTau), amyloid precursor protein levels, and phospho-tau (pTau)-T181/tTau ratio from MCI subjects and late increases of Aβ42 and pTau-T181 levels from patients with moderate AD. Interestingly, abnormal amyloid precursor protein levels and pTau-T181/tTau ratio in pEVs demonstrated a high accuracy to define MCI and AD staging. Although larger samples sizes will be needed to generate well-powered investigations, these preliminary results highlighted the potential of AD-related proteins enriched in pEVs as a sensitive tool for differentiating patients with MCI to patients with AD and monitoring AD progression.
Collapse
Affiliation(s)
- Morgane Perrotte
- Institut National de La Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada; Institute on Nutrition and Functional Foods, Laval University, Québec, Canada; Quebec Network for Research on Aging, University of Montreal, Montreal, QC, Canada
| | - Mohamed Haddad
- Institut National de La Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada; Institute on Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Aurélie Le Page
- Department of Medicine, Geriatric Division, Research Center on Aging, University of Sherbrooke, QC, Canada
| | - Eric H Frost
- Department of Microbiology and Infectiology, Centre de Recherches Cliniques de CHUS, University of Sherbrooke, QC, Canada
| | - Tamàs Fulöp
- Department of Medicine, Geriatric Division, Research Center on Aging, University of Sherbrooke, QC, Canada
| | - Charles Ramassamy
- Institut National de La Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada; Institute on Nutrition and Functional Foods, Laval University, Québec, Canada; Quebec Network for Research on Aging, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|