1
|
Sato T, Ochiishi T, Higo-Yamamoto S, Oishi K. Circadian and sleep phenotypes in a mouse model of Alzheimer's disease characterized by intracellular accumulation of amyloid β oligomers. Exp Anim 2024; 73:186-192. [PMID: 38092387 PMCID: PMC11091359 DOI: 10.1538/expanim.23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/06/2023] [Indexed: 05/08/2024] Open
Abstract
Disturbances in sleep-wake and circadian rhythms may reportedly precede the onset of cognitive symptoms in the early stages of Alzheimer's disease (AD); however, the underlying mechanisms of these AD-induced sleep disturbances remain unelucidated. To specifically evaluate the involvement of amyloid beta (Aβ) oligomers in AD-induced sleep disturbances, we examined circadian and sleep phenotypes using an Aβ-GFP transgenic (Aβ-GFP Tg) mouse characterized by intracellular accumulation of Aβ oligomers. The circadian rhythm and free-running period of wheel running activity were identical between Aβ-GFP Tg and littermate wild-type mice. The durations of rapid eye movement (REM) sleep were elongated in Aβ-GFP Tg mice; however, the durations of non-REM sleep and wakefulness were unaffected. The Aβ-GFP Tg mice exhibited shifts in the electroencephalogram (EEG) power spectra toward higher frequencies in the inactive light phase. These findings suggest that the intracellular accumulation of Aβ oligomers might be associated with sleep quality; however, its impact on circadian systems is limited.
Collapse
Affiliation(s)
- Tomoyuki Sato
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoyo Ochiishi
- Molecular Neurobiology Research Group, Biomedical Research Institute (BMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Abstract
Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.
Collapse
|
3
|
Cheng Y, Sun M, Wang F, Geng X, Wang F. Identification of Hub Genes Related to Alzheimer's Disease and Major Depressive Disorder. Am J Alzheimers Dis Other Demen 2021; 36:15333175211046123. [PMID: 34732058 PMCID: PMC10695082 DOI: 10.1177/15333175211046123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BackgroundAlthough many studies reported a close relationship between depression and Alzheimer's disease (AD), the underlying pathophysiological mechanism remains unclear. The present study aimed to investigate the mechanism of AD and major depressive disorder (MDD). Method: The datasets were downloaded from the Gene Expression Omnibus. After screening differentially expressed genes (DEGs), gene ontology and pathway analysis were performed and protein-protein interaction, TF-target gene, and miRNA-target gene networks were established. Results: 171 DEGs of AD-related datasets and 79 DEGs shared by AD and MDD were detected. Functional analysis revealed that AD and MDD common genes were significantly enriched in circadian entrainment and long-term depression signaling pathways. Five hub genes were identified after construction of networks and validation of hub gene signatures. In conclusion, DYNC1H1, MAPRE3, TTBK2, ITGB1, and WASL may be potential targets for the diagnosis and treatment of AD and MDD.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Meiyue Sun
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|