1
|
Zaghi M, Longo F, Massimino L, Rubio A, Bido S, Mazzara PG, Bellini E, Banfi F, Podini P, Maltecca F, Zippo A, Broccoli V, Sessa A. SETD5 haploinsufficiency affects mitochondrial compartment in neural cells. Mol Autism 2023; 14:20. [PMID: 37264456 DOI: 10.1186/s13229-023-00550-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. METHODS We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. RESULTS Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. LIMITATIONS We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. CONCLUSIONS Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Fabiana Longo
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- University California, Irvine, USA
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Alicia Rubio
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Pietro Giuseppe Mazzara
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Paola Podini
- Experimental Neuropathology Unit, INSPE, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesca Maltecca
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Alessio Zippo
- Chromatin Biology and Epigenetics Lab, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
- CNR Institute of Neuroscience, 20129, Milan, Italy.
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
2
|
Castora FJ, Kerns KA, Pflanzer HK, Hitefield NL, Gershon B, Shugoll J, Shelton M, Coleman RA. Expression Changes in Mitochondrial Genes Affecting Mitochondrial Morphology, Transmembrane Potential, Fragmentation, Amyloidosis, and Neuronal Cell Death Found in Brains of Alzheimer’s Disease Patients. J Alzheimers Dis 2022; 90:119-137. [DOI: 10.3233/jad-220161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurological disease that has both a genetic and non-genetic origin. Mitochondrial dysfunction is a critical component in the pathogenesis of AD as deficits in oxidative capacity and energy production have been reported. Objective: Nuclear-encoded mitochondrial genes were studied in order to understand the effects of mitochondrial expression changes on mitochondrial function in AD brains. These expression data were to be incorporated into a testable mathematical model for AD used to further assess the genes of interest as therapeutic targets for AD. Methods: RT2-PCR arrays were used to assess expression of 84 genes involved in mitochondrial biogenesis in AD brains. A subset of mitochondrial genes of interest was identified after extensive Ingenuity Pathway Analysis (IPA) (Qiagen). Further filtering of this subset of genes of interest was achieved by individual qPCR analyses. Expression values from this group of genes were included in a mathematical model being developed to identify potential therapeutic targets. Results: Nine genes involved in trafficking proteins to mitochondria, morphology of mitochondria, maintenance of mitochondrial transmembrane potential, fragmentation of mitochondria and mitochondrial dysfunction, amyloidosis, and neuronal cell death were identified as significant to the changes seen. These genes include TP53, SOD2, CDKN2A, MFN2, DNM1L, OPA1, FIS1, BNIP3, and GAPDH. Conclusion: Altered mitochondrial gene expression indicates that a subset of nuclear-encoded mitochondrial genes compromise multiple aspects of mitochondrial function in AD brains. A new mathematical modeling system may provide further insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Frank J. Castora
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kimberly A. Kerns
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Haley K. Pflanzer
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Naomi L. Hitefield
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Blake Gershon
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jason Shugoll
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Morgan Shelton
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| | - Randolph A. Coleman
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
3
|
Antonyová V, Kejík Z, Brogyányi T, Kaplánek R, Pajková M, Talianová V, Hromádka R, Masařík M, Sýkora D, Mikšátková L, Martásek P, Jakubek M. Role of mtDNA disturbances in the pathogenesis of Alzheimer's and Parkinson's disease. DNA Repair (Amst) 2020; 91-92:102871. [PMID: 32502755 DOI: 10.1016/j.dnarep.2020.102871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (e.g. Alzheimer's and Parkinson's disease) are becoming increasingly problematic to healthcare systems. Therefore, their underlying mechanisms are trending topics of study in medicinal research. Numerous studies have evidenced a strong association between mitochondrial DNA disturbances (e.g. oxidative damage, mutations, and methylation shifts) and the initiation and progression of neurodegenerative diseases. Therefore, this review discusses the risk and development of neurodegenerative diseases in terms of disturbances in mitochondrial DNA and as a part of a complex ecosystem that includes other important mechanisms (e.g. neuroinflammation and the misfolding and aggregation of amyloid-β peptides, α-synuclein, and tau proteins). In addition, the influence of individual mitochondrial DNA haplogroups on the risk and development of neurodegenerative diseases is also described and discussed.
Collapse
Affiliation(s)
- Veronika Antonyová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Tereza Brogyányi
- Depertment of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Martina Pajková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Veronika Talianová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Róbert Hromádka
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Michal Masařík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - David Sýkora
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Lucie Mikšátková
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| | - Milan Jakubek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic.
| |
Collapse
|