1
|
Lorenc F, Dupuis L, Cassel R. Impairments of inhibitory neurons in amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol Dis 2024; 203:106748. [PMID: 39592063 DOI: 10.1016/j.nbd.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two fatal neurodegenerative disorders. They are part of a pathophysiological continuum, displaying clinical, neuropathological, and genetic overlaps. There is compelling evidence that neuronal circuit dysfunction is an early feature of both diseases. Impaired neuronal excitability, imbalanced excitatory and inhibitory influences, and altered functional connectivity have been reported. These phenomena are likely due to combined alterations in the various cellular components involved in the functioning of neuronal networks. This review focuses on one of these cellular components: inhibitory neurons. We assess the evidence for inhibitory neuron impairments in amyotrophic lateral sclerosis and frontotemporal dementia, as well as the mechanisms leading to the loss of inhibition. We also discuss the contributions of these alterations to symptoms, and the potential therapeutic strategies for targeting inhibitory neuron deficits.
Collapse
Affiliation(s)
- Félicie Lorenc
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Raphaelle Cassel
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| |
Collapse
|
2
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Mimura Y, Tobari Y, Nakahara K, Nakajima S, Yoshida K, Mimura M, Noda Y. Transcranial magnetic stimulation neurophysiology in patients with non-Alzheimer's neurodegenerative diseases: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105451. [PMID: 37926239 DOI: 10.1016/j.neubiorev.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Non-Alzheimer's dementia (NAD) accounts for 30% of all neurodegenerative conditions and is characterized by cognitive decline beyond mere memory dysfunction. Diagnosing NAD remains challenging due to the lack of established biomarkers. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that enables the investigation of cortical excitability in the human brain. Paired-pulse TMS paradigms include short- and long-interval intracortical inhibition (SICI/LICI), intracortical facilitation (ICF), and short-latency afferent inhibition (SAI), which can assess neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits, respectively. We conducted the first systematic review and meta-analysis to compare these TMS indices among patients with NAD and healthy controls. Our meta-analyses indicated that TMS neurophysiological examinations revealed decreased glutamatergic function in patients with frontotemporal dementia (FTD) and decreased GABAergic function in patients with FTD, progressive supranuclear palsy, Huntington's disease, cortico-basal syndrome, and multiple system atrophy-parkinsonian type. In addition, decreased cholinergic function was found in dementia with Lewy body and vascular dementia. These results suggest the potential of TMS as an additional diagnostic tool to differentiate NAD.
Collapse
Affiliation(s)
- Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazuho Nakahara
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada; Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Benussi A, Borroni B. Advances in the treatment and management of frontotemporal dementia. Expert Rev Neurother 2023; 23:621-639. [PMID: 37357688 DOI: 10.1080/14737175.2023.2228491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a complex neurodegenerative disorder, characterized by a wide range of pathological conditions associated with the buildup of proteins such as tau and TDP-43. With a strong hereditary component, FTD often results from genetic variants in three genes - MAPT, GRN, and C9orf72. AREAS COVERED In this review, the authors explore abnormal protein accumulation in FTD and forthcoming treatments, providing a detailed analysis of new diagnostic advancements, including innovative markers. They analyze how these discoveries have influenced therapeutic strategies, particularly disease-modifying treatments, which could potentially transform FTD management. This comprehensive exploration of FTD from its molecular underpinnings to its therapeutic prospects offers a compelling overview of the current state of FTD research. EXPERT OPINION Notable challenges in FTD management involve identifying reliable biomarkers for early diagnosis and response monitoring. Genetic forms of FTD, particularly those linked to C9orf72 and GRN, show promise, with targeted therapies resulting in substantial progress in disease-modifying strategies. The potential of neuromodulation techniques, like tDCS and rTMS, is being explored, requiring further study. Ongoing trials and multi-disciplinary care highlight the continued push toward effective FTD treatments. With increasing understanding of FTD's molecular and clinical intricacies, the hope for developing effective interventions grows.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
5
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
6
|
Sanz Perl Y, Fittipaldi S, Gonzalez Campo C, Moguilner S, Cruzat J, Fraile-Vazquez ME, Herzog R, Kringelbach ML, Deco G, Prado P, Ibanez A, Tagliazucchi E. Model-based whole-brain perturbational landscape of neurodegenerative diseases. eLife 2023; 12:e83970. [PMID: 36995213 PMCID: PMC10063230 DOI: 10.7554/elife.83970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
| | - Sol Fittipaldi
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
| | - Cecilia Gonzalez Campo
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California, San FranciscoSan FranciscoUnited States
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | - Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | | | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | - Morten L Kringelbach
- Department of Psychiatry, University of OxfordOxfordUnited Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus UniversityÅrhusDenmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBragaPortugal
- Centre for Eudaimonia and Human Flourishing, University of OxfordOxfordUnited Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
- Department of Information and Communication Technologies, Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA)BarcelonaSpain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- School of Psychological Sciences, Monash UniversityClaytonAustralia
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San SebastiánSantiagoChile
| | - Agustin Ibanez
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Global Brain Health Institute, University of California, San FranciscoSan FranciscoUnited States
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
- Trinity College Institute of Neuroscience (TCIN), Trinity College DublinDublinIreland
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| |
Collapse
|
7
|
Chatzidimitriou E, Ioannidis P, Moraitou D, Konstantinopoulou E, Aretouli E. The cognitive and behavioral correlates of functional status in patients with frontotemporal dementia: A pilot study. Front Hum Neurosci 2023; 17:1087765. [PMID: 36923586 PMCID: PMC10009888 DOI: 10.3389/fnhum.2023.1087765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Objective: Frontotemporal dementia (FTD) impinges significantly on cognition, behavior, and everyday functioning. Goal of the present study is the detailed description of behavioral disturbances and functional limitations, as well as the investigation of associations between cognition, behavior, and functional impairment among FTD patients. Given the importance of maintaining a satisfying functional status as long as possible, this study also aims to identify the cognitive correlates of compensatory strategy use in this clinical group. Methods: A total of 13 patients diagnosed with FTD (behavioral variant FTD = 9, non-fluent variant primary progressive aphasia = 3, semantic dementia = 1) were administrated a broad range of neuropsychological tests for the assessment of different cognitive abilities. Behavioral symptomatology and performance on everyday activities were rated with informant-based measures. Descriptive statistics were used for the delineation of behavioral and functional patterns, whereas stepwise multiple regression analyses were performed to identify associations between cognition, behavior, and functional status. Results: Negative symptoms, especially apathy, were found to predominate in the behavior of FTD patients. Instrumental tasks, such as housework and leisure activities, appeared to be the most impaired functional domains. Working memory was the strongest cognitive correlate of performance across various domains of everyday functioning, whereas working memory along with short-term verbal memory accounted for a great proportion of variance in compensatory strategy use. Behavioral disturbances and especially negative symptoms were also found to contribute significantly to functional impairment in FTD. Conclusions: Executive dysfunction, as well as behavioral disturbances contribute significantly to functional disability in FTD. Early interventions tailored at these domains may have the potential to improve functional outcomes and delay the rate of functional decline among FTD patients.
Collapse
Affiliation(s)
- Electra Chatzidimitriou
- Laboratory of Cognitive Neuroscience, School of Psychology, Faculty of Philosophy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Ioannidis
- B Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Moraitou
- Laboratory of Cognitive Neuroscience, School of Psychology, Faculty of Philosophy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Konstantinopoulou
- Laboratory of Cognitive Neuroscience, School of Psychology, Faculty of Philosophy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Aretouli
- School of Psychology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
8
|
O'Connor CMC, Fisher A, Cheung SC, Caga J, Piguet O. Supporting behaviour change in younger-onset dementia: mapping the needs of family carers in the community. Aging Ment Health 2022; 26:2252-2261. [PMID: 34424808 DOI: 10.1080/13607863.2021.1966744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Almost 10% of people with dementia experience a younger-onset of disease (before 65 years). Changes in behaviour are common, as are delays in diagnosis and limited access to appropriate support and services. This study aimed to explore the specific behaviour support needs of families living with younger-onset dementia. METHODS Seventy-one families of people with younger-onset dementia were surveyed to understand the experience of family carers regarding difficult-to-manage behaviour changes, confidence in identifying and implementing behaviour support strategies, use of specific behaviour support strategies, and use of formal and informal support services regarding behaviour changes. RESULTS Survey responses were received from family members of people living with behavioural variant frontotemporal dementia (n = 28), semantic dementia (n = 17), and Alzheimer's disease (n = 23). Over 90% of family carers reported difficult-to-manage behaviours which fell into four main domains: (1) aggression, (2) compulsive behaviour, (3) disinhibition and inappropriate social behaviour, and (4) apathy. A range of preventative and responsive strategies, with an emphasis on de-escalation strategies were identified and carers reported variable confidence in managing behaviour changes or in accessing formal support strategies. CONCLUSIONS Difficult-to-manage behaviour changes in community-dwelling people with younger-onset dementia are common. The existing agency of families should be recognised and built upon with better access to specific behaviour support services to increase competence and confidence in providing behaviour support and ultimately improve quality of life for them and their family member with dementia.
Collapse
Affiliation(s)
- Claire M C O'Connor
- Centre for Positive Ageing, HammondCare, Sydney, Australia.,School of Population Health, The University of New South Wales, Sydney, Australia
| | - Alinka Fisher
- College of Nursing and Health Sciences Adelaide, Flinders University, Adelaide, Australia
| | - Sau Chi Cheung
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Jashelle Caga
- Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Olivier Piguet
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Benussi A, Cantoni V, Rivolta J, Archetti S, Micheli A, Ashton N, Zetterberg H, Blennow K, Borroni B. Classification accuracy of blood-based and neurophysiological markers in the differential diagnosis of Alzheimer's disease and frontotemporal lobar degeneration. Alzheimers Res Ther 2022; 14:155. [PMID: 36229847 PMCID: PMC9558959 DOI: 10.1186/s13195-022-01094-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND In the last decade, non-invasive blood-based and neurophysiological biomarkers have shown great potential for the discrimination of several neurodegenerative disorders. However, in the clinical workup of patients with cognitive impairment, it will be highly unlikely that any biomarker will achieve the highest potential predictive accuracy on its own, owing to the multifactorial nature of Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). METHODS In this retrospective study, performed on 202 participants, we analysed plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau phosphorylated at amino acid 181 (p-Tau181) concentrations, as well as amyloid β42 to 40 ratio (Aβ1-42/1-40) ratio, using the ultrasensitive single-molecule array (Simoa) technique, and neurophysiological measures obtained by transcranial magnetic stimulation (TMS), including short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), long-interval intracortical inhibition (LICI), and short-latency afferent inhibition (SAI). We assessed the diagnostic accuracy of combinations of both plasma and neurophysiological biomarkers in the differential diagnosis between healthy ageing, AD, and FTLD. RESULTS We observed significant differences in plasma NfL, GFAP, and p-Tau181 levels between the groups, but not for the Aβ1-42/Aβ1-40 ratio. For the evaluation of diagnostic accuracy, we adopted a two-step process which reflects the clinical judgement on clinical grounds. In the first step, the best single biomarker to classify "cases" vs "controls" was NfL (AUC 0.94, p < 0.001), whilst in the second step, the best single biomarker to classify AD vs FTLD was SAI (AUC 0.96, p < 0.001). The combination of multiple biomarkers significantly increased diagnostic accuracy. The best model for classifying "cases" vs "controls" included the predictors p-Tau181, GFAP, NfL, SICI, ICF, and SAI, resulting in an AUC of 0.99 (p < 0.001). For the second step, classifying AD from FTD, the best model included the combination of Aβ1-42/Aβ1-40 ratio, p-Tau181, SICI, ICF, and SAI, resulting in an AUC of 0.98 (p < 0.001). CONCLUSIONS The combined assessment of plasma and neurophysiological measures may greatly improve the differential diagnosis of AD and FTLD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
- Neurology Unit, ASST Spedali Civili Brescia, Brescia, Italy
| | - Valentina Cantoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jasmine Rivolta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory and Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | | | - Nicholas Ashton
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
- Neurology Unit, ASST Spedali Civili Brescia, Brescia, Italy.
| |
Collapse
|
10
|
Perry A, Hughes LE, Adams N, Naessens M, Murley AG, Rouse MA, Street D, Jones PS, Cope TE, Kocagoncu E, Rowe JB. The neurophysiological effect of NMDA-R antagonism of frontotemporal lobar degeneration is conditional on individual GABA concentration. Transl Psychiatry 2022; 12:348. [PMID: 36030249 PMCID: PMC9420128 DOI: 10.1038/s41398-022-02114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 02/02/2023] Open
Abstract
There is a pressing need to accelerate therapeutic strategies against the syndromes caused by frontotemporal lobar degeneration, including symptomatic treatments. One approach is for experimental medicine, coupling neurophysiological studies of the mechanisms of disease with pharmacological interventions aimed at restoring neurochemical deficits. Here we consider the role of glutamatergic deficits and their potential as targets for treatment. We performed a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study in 20 people with symptomatic frontotemporal lobar degeneration (10 behavioural variant frontotemporal dementia, 10 progressive supranuclear palsy) and 19 healthy age- and gender-matched controls. Both magnetoencephalography sessions recorded a roving auditory oddball paradigm: on placebo or following 10 mg memantine, an uncompetitive NMDA-receptor antagonist. Ultra-high-field magnetic resonance spectroscopy confirmed lower concentrations of GABA in the right inferior frontal gyrus of people with frontotemporal lobar degeneration. While memantine showed a subtle effect on early-auditory processing in patients, there was no significant main effect of memantine on the magnitude of the mismatch negativity (MMN) response in the right frontotemporal cortex in patients or controls. However, the change in the right auditory cortex MMN response to memantine (vs. placebo) in patients correlated with individuals' prefrontal GABA concentration. There was no moderating effect of glutamate concentration or cortical atrophy. This proof-of-concept study demonstrates the potential for baseline dependency in the pharmacological restoration of neurotransmitter deficits to influence cognitive neurophysiology in neurodegenerative disease. With changes to multiple neurotransmitters in frontotemporal lobar degeneration, we suggest that individuals' balance of excitation and inhibition may determine drug efficacy, with implications for drug selection and patient stratification in future clinical trials.
Collapse
Affiliation(s)
- Alistair Perry
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Laura E Hughes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Natalie Adams
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michelle Naessens
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Duncan Street
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Thomas E Cope
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ece Kocagoncu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
11
|
Benussi A, Libri I, Premi E, Alberici A, Cantoni V, Gadola Y, Rivolta J, Pengo M, Gazzina S, Calhoun VD, Gasparotti R, Zetterberg H, Ashton NJ, Blennow K, Padovani A, Borroni B. Differences and similarities between familial and sporadic frontotemporal dementia: An Italian single-center cohort study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12326. [PMID: 35898667 PMCID: PMC9310192 DOI: 10.1002/trc2.12326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Introduction The possibility to generalize our understandings on treatments and assessments to both familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD) is a fundamental perspective for the near future, considering the constant advancement in potential disease-modifying therapies that target particular genetic forms of FTD. We aimed to investigate differences in clinical features, cerebrospinal fluid (CSF), and blood-based biomarkers between f-FTD and s-FTD. Methods In this longitudinal cohort study, we evaluated a consecutive sample of symptomatic FTD patients, classified as f-FTD and s-FTD according to Goldman scores (GS). All patients underwent clinical, behavioral, and neuropsychiatric symptom assessment, CSF biomarkers and serum neurofilament light (NfL) analysis, and brain atrophy evaluation with magnetic resonance imaging. Results Of 570 patients with FTD, 123 were classified as f-FTD, and 447 as s-FTD. In the f-FTD group, 95 had a pathogenic FTD mutation while 28 were classified as GS = 1 or 2; of the s-FTD group, 133 were classified as GS = 3 and 314 with GS = 4. f-FTD and s-FTD cases showed comparable demographic features, except for younger age at disease onset, age at diagnosis, and higher years of education in the f-FTD group (all P < .05). f-FTD showed worse behavioral disturbances as measured with Frontal Behavioral Inventory (FBI) negative behaviors (14.0 ± 7.6 vs. 11.6 ± 7.4, P = .002), and positive behaviors (20.0 ± 11.0 vs. 17.4 ± 11.8, P = .031). Serum NfL concentrations were higher in patients with f-FTD (70.9 ± 37.9 pg/mL) compared to s-FTD patients (37.3 ± 24.2 pg/mL, P < .001), and f-FTD showed greater brain atrophy in the frontal and temporal regions and basal ganglia. Patients with f-FTD had significantly shorter survival than those with s-FTD (P = .004). Discussion f-FTD and s-FTD are very similar clinical entities, but with different biological mechanisms, and different rates of progression. The parallel characterization of both f-FTD and s-FTD will improve our understanding of the disease, and aid in designing future clinical trials for both genetic and sporadic forms of FTD. Highlights Do clinical features and biomarkers differ between patients with familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD)?In this cohort study of 570 patients with FTD, f-FTD and s-FTD share similar demographic features, but with younger age at disease onset and diagnosis in the f-FTD group.f-FTD showed higher serum neurofilament light concentrations, greater brain damage, and shorter survival, compared to s-FTD.f-FTD and s-FTD are very similar clinical entities, but with different cognitive reserve mechanisms and different rates of progression.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Ilenia Libri
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Enrico Premi
- Stroke UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Antonella Alberici
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Valentina Cantoni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Yasmine Gadola
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Jasmine Rivolta
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Marta Pengo
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Stefano Gazzina
- Neurophysiology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Vince D. Calhoun
- The Mind Research NetworkDepartment of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Nicholas J. Ashton
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgMölndalSweden
- King's College LondonInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Alessandro Padovani
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Barbara Borroni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| |
Collapse
|
12
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Insights into the Pathophysiology of Psychiatric Symptoms in Central Nervous System Disorders: Implications for Early and Differential Diagnosis. Int J Mol Sci 2021; 22:ijms22094440. [PMID: 33922780 PMCID: PMC8123079 DOI: 10.3390/ijms22094440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer’s disease, fronto-temporal dementia, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.
Collapse
|
14
|
Giunta M, Solje E, Gardoni F, Borroni B, Benussi A. Experimental Disease-Modifying Agents for Frontotemporal Lobar Degeneration. J Exp Pharmacol 2021; 13:359-376. [PMID: 33790662 PMCID: PMC8005747 DOI: 10.2147/jep.s262352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia is a clinically, genetically and pathologically heterogeneous neurodegenerative disorder, enclosing a wide range of different pathological entities, associated with the accumulation of proteins such as tau and TPD-43. Characterized by a high hereditability, mutations in three main genes, MAPT, GRN and C9orf72, can drive the neurodegenerative process. The connection between different genes and proteinopathies through specific mechanisms has shed light on the pathophysiology of the disease, leading to the identification of potential pharmacological targets. New experimental strategies are emerging, in both preclinical and clinical settings, which focus on small molecules rather than gene therapy. In this review, we provide an insight into the aberrant mechanisms leading to FTLD-related proteinopathies and discuss recent therapies with the potential to ameliorate neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Benussi A, Grassi M, Palluzzi F, Cantoni V, Cotelli MS, Premi E, Di Lorenzo F, Pellicciari MC, Ranieri F, Musumeci G, Marra C, Manganotti P, Nardone R, Di Lazzaro V, Koch G, Borroni B. Classification accuracy of TMS for the diagnosis of mild cognitive impairment. Brain Stimul 2021; 14:241-249. [PMID: 33453454 DOI: 10.1016/j.brs.2021.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate the performance of a Random Forest (RF) classifier on Transcranial Magnetic Stimulation (TMS) measures in patients with Mild Cognitive Impairment (MCI). METHODS We applied a RF classifier on TMS measures obtained from a multicenter cohort of patients with MCI, including MCI-Alzheimer's Disease (MCI-AD), MCI-frontotemporal dementia (MCI-FTD), MCI-dementia with Lewy bodies (MCI-DLB), and healthy controls (HC). All patients underwent TMS assessment at recruitment (index test), with application of reference clinical criteria, to predict different neurodegenerative disorders. The primary outcome measures were the classification accuracy, precision, recall and F1-score of TMS in differentiating each disorder. RESULTS 160 participants were included, namely 64 patients diagnosed as MCI-AD, 28 as MCI-FTD, 14 as MCI-DLB, and 47 as healthy controls (HC). A series of 3 binary classifiers was employed, and the prediction model exhibited high classification accuracy (ranging from 0.72 to 0.86), high precision (0.72-0.90), high recall (0.75-0.98), and high F1-scores (0.78-0.92), in differentiating each neurodegenerative disorder. By computing a new classifier, trained and validated on the current cohort of MCI patients, classification indices showed even higher accuracy (ranging from 0.83 to 0.93), precision (0.87-0.89), recall (0.83-1.00), and F1-scores (0.85-0.94). CONCLUSIONS TMS may be considered a useful additional screening tool to be used in clinical practice in the prodromal stages of neurodegenerative dementias.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinial and Experimental Sciences, University of Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Fernando Palluzzi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinial and Experimental Sciences, University of Brescia, Italy
| | | | - Enrico Premi
- Neurology Unit, Department of Clinial and Experimental Sciences, University of Brescia, Italy
| | | | | | - Federico Ranieri
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gabriella Musumeci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Camillo Marra
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
| | | | - Raffaele Nardone
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Stroke Unit, Policlinico Tor Vergata, Rome, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinial and Experimental Sciences, University of Brescia, Italy.
| |
Collapse
|
16
|
Fatih P, Kucuker MU, Vande Voort JL, Doruk Camsari D, Farzan F, Croarkin PE. A Systematic Review of Long-Interval Intracortical Inhibition as a Biomarker in Neuropsychiatric Disorders. Front Psychiatry 2021; 12:678088. [PMID: 34149483 PMCID: PMC8206493 DOI: 10.3389/fpsyt.2021.678088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Long-interval intracortical inhibition (LICI) is a paired-pulse transcranial magnetic stimulation (TMS) paradigm mediated in part by gamma-aminobutyric acid receptor B (GABAB) inhibition. Prior work has examined LICI as a putative biomarker in an array of neuropsychiatric disorders. This review conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) sought to examine existing literature focused on LICI as a biomarker in neuropsychiatric disorders. There were 113 articles that met the inclusion criteria. Existing literature suggests that LICI may have utility as a biomarker of GABAB functioning but more research with increased methodologic rigor is needed. The extant LICI literature has heterogenous methodology and inconsistencies in findings. Existing findings to date are also non-specific to disease. Future research should carefully consider existing methodological weaknesses and implement high-quality test-retest reliability studies.
Collapse
Affiliation(s)
- Parmis Fatih
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - M Utku Kucuker
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Jennifer L Vande Voort
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Deniz Doruk Camsari
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Centre for Engineering-Led Brain Research, Simon Fraser University, Surrey, BC, Canada
| | - Paul E Croarkin
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Benussi A, Ashton NJ, Karikari TK, Gazzina S, Premi E, Benussi L, Ghidoni R, Rodriguez JL, Emeršič A, Binetti G, Fostinelli S, Giunta M, Gasparotti R, Zetterberg H, Blennow K, Borroni B. Serum Glial Fibrillary Acidic Protein (GFAP) Is a Marker of Disease Severity in Frontotemporal Lobar Degeneration. J Alzheimers Dis 2020; 77:1129-1141. [DOI: 10.3233/jad-200608] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: It is still unknown if serum glial fibrillary acidic protein (GFAP) is a useful marker in frontotemporal lobar degeneration (FTLD). Objective: To assess the diagnostic and prognostic value of serum GFAP in a large cohort of patients with FTLD. Methods: In this retrospective study, performed on 406 participants, we measured serum GFAP concentration with an ultrasensitive Single molecule array (Simoa) method in patients with FTLD, Alzheimer’s disease (AD), and in cognitively unimpaired elderly controls. We assessed the role of GFAP as marker of disease severity by analyzing the correlation with clinical variables, neurophysiological data, and cross-sectional brain imaging. Moreover, we evaluated the role of serum GFAP as a prognostic marker of disease survival. Results: We observed significantly higher levels of serum GFAP in patients with FTLD syndromes, except progressive supranuclear palsy, compared with healthy controls, but not compared with AD patients. In FTLD, serum GFAP levels correlated with measures of cognitive dysfunction and disease severity, and were associated with indirect measures of GABAergic deficit. Serum GFAP concentration was not a significant predictor of survival. Conclusion: Serum GFAP is increased in FTLD, correlates with cognition and GABAergic deficits, and thus shows promise as a biomarker of disease severity in FTLD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Nicholas J. Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K. Karikari
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | - Enrico Premi
- Stroke Unit, ASST Spedali Civili, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Juan Lantero Rodriguez
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Andreja Emeršič
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
Neurotransmitter imbalance dysregulates brain dynamic fluidity in frontotemporal degeneration. Neurobiol Aging 2020; 94:176-184. [PMID: 32629312 DOI: 10.1016/j.neurobiolaging.2020.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Frontotemporal degeneration (FTD) is characterized by reduced global brain flexibility along with GABAergic/glutamatergic neurotransmitter deficits. We aimed to assess the relationship between dynamical properties of time-varying whole-brain network connectivity as well as static large-scale networks and neurotransmitter imbalance using resting-state functional MRI and transcranial magnetic stimulation (TMS) in sixty-six patients with FTD. We assessed GABAergic and glutamatergic neurotransmission by TMS, considering short- and long-interval intracortical inhibition and intracortical facilitation, and large-scale networks connectivity as well as four indexes of meta-state dynamic fluidity: (1) number of distinct meta-states, (2) number of switches from one meta-state to another, (3) span of the realized meta-states, and (4) total distance traveled in the state space. No significant correlations between TMS parameters and large-scale networks connectivity were observed. However, we observed a significant correlation between short-interval intracortical inhibition-intracortical facilitation and four meta-states (all indexes p < 0.02, false discovery rate-corrected). This study suggests that neurotransmitter imbalance dysregulates brain dynamic fluidity, linking microscopic and macroscopic changes in FTD.
Collapse
|
20
|
Benussi A, Dell'Era V, Cosseddu M, Cantoni V, Cotelli MS, Cotelli M, Manenti R, Benussi L, Brattini C, Alberici A, Borroni B. Transcranial stimulation in frontotemporal dementia: A randomized, double-blind, sham-controlled trial. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12033. [PMID: 32490143 PMCID: PMC7253155 DOI: 10.1002/trc2.12033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a progressive disease for which no curative treatment is currently available. We aimed to determine whether transcranial direct current stimulation (tDCS) can modulate intracortical connectivity and improve cognition in symptomatic FTD patients and presymptomatic FTD subjects. METHODS We performed a double-blind, randomized, sham-controlled trial with anodal tDCS or sham stimulation over the left prefrontal cortex in 70 participants (15 presymptomatic and 55 symptomatic FTD). RESULTS We observed a significant increase of intracortical connectivity (short interval intracortical inhibition and facilitation) and improvement in clinical scores and behavioral disturbances in both symptomatic FTD patients and presymptomatic carriers after real tDCS but not after sham stimulation. DISCUSSION A 2-weeks' treatment with anodal left prefrontal tDCS improves symptoms and restores intracortical inhibitory and excitatory circuits in both symptomatic FTD patients and presymptomatic carriers. tDCS might represent a promising future therapeutic and rehabilitative approach in patients with FTD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Valentina Dell'Era
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | | | - Valentina Cantoni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | | | - Maria Cotelli
- Neuropsychology UnitIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Rosa Manenti
- Neuropsychology UnitIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Luisa Benussi
- Molecular Markers LaboratoryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Chiara Brattini
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | | | - Barbara Borroni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|