1
|
Hacker RM, Grimard DM, Morgan KA, Saleh E, Wrublik MM, Meiss CJ, Kant CC, Jones MA, Brennessel WW, Webb MI. Ru(II)-arene azole complexes as anti-amyloid-β agents. Dalton Trans 2024. [PMID: 39093049 DOI: 10.1039/d4dt01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
With the recent clinical success of anti-amyloid-β (Aβ) monoclonal antibodies, there is a renewed interest in agents which target the Aβ peptide of Alzheimer's disease (AD). Metal complexes are particularly well-suited for this development, given their structural versatility and ability to form stabile interactions with soluble Aβ. In this report, a small series of ruthenium-arene complexes were evaluated for their respective ability to modulate both the aggregation and cytotoxicity of Aβ. First, the stability of the complexes was evaluated in a variety of aqueous media where the complexes demonstrated exceptional stability. Next, the ability to coordinate and modulate the Aβ peptide was evaluated using several spectroscopic methods, including thioflavin T (ThT) fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the complex RuBO consistently gave the greatest inhibitory action towards Aβ aggregation, which correlated with its ability to coordinate to Aβ in solution. Furthermore, RuBO also had the lowest affinity for serum albumin, which is a key consideration for a neurotherapeutic, as this protein does not cross the blood brain barrier. Lastly, RuBO also displayed promising neuroprotective properties, as it had the greatest inhibition of Aβ-inducted cytotoxicity.
Collapse
Affiliation(s)
- Ryan M Hacker
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Daniela M Grimard
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Katie A Morgan
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Eaman Saleh
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Morgan M Wrublik
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Cade J Meiss
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Caitlyn C Kant
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | | | - Michael I Webb
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| |
Collapse
|
2
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Gomes Moreira D, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. eLife 2024; 12:RP90690. [PMID: 39027984 PMCID: PMC11259434 DOI: 10.7554/elife.90690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Maria Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Ann Becker
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
- Medical Faculty, Heidelberg UniversityHeidelbergGermany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityHeidelbergGermany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - William Mobley
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | | |
Collapse
|
3
|
Schreiner TG, Croitoru CG, Hodorog DN, Cuciureanu DI. Passive Anti-Amyloid Beta Immunotherapies in Alzheimer's Disease: From Mechanisms to Therapeutic Impact. Biomedicines 2024; 12:1096. [PMID: 38791059 PMCID: PMC11117736 DOI: 10.3390/biomedicines12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease, the most common type of dementia worldwide, lacks effective disease-modifying therapies despite significant research efforts. Passive anti-amyloid immunotherapies represent a promising avenue for Alzheimer's disease treatment by targeting the amyloid-beta peptide, a key pathological hallmark of the disease. This approach utilizes monoclonal antibodies designed to specifically bind amyloid beta, facilitating its clearance from the brain. This review offers an original and critical analysis of anti-amyloid immunotherapies by exploring several aspects. Firstly, the mechanisms of action of these therapies are reviewed, focusing on their ability to promote Aβ degradation and enhance its efflux from the central nervous system. Subsequently, the extensive history of clinical trials involving anti-amyloid antibodies is presented, from initial efforts using first-generation molecules leading to mixed results to recent clinically approved drugs. Along with undeniable progress, the authors also highlight the pitfalls of this approach to offer a balanced perspective on this topic. Finally, based on its potential and limitations, the future directions of this promising therapeutic strategy for Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Cristina Georgiana Croitoru
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Immunology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Nicoleta Hodorog
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| | - Dan Iulian Cuciureanu
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| |
Collapse
|
4
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Moreira DG, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551596. [PMID: 37577527 PMCID: PMC10418207 DOI: 10.1101/2023.08.02.551596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75 and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular -homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - María Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - William Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | | |
Collapse
|
5
|
Kuhn AJ, Chan K, Sajimon M, Yoo S, Balasco Serrão VH, Lee J, Abrams B, Nowick JS, Uversky VN, Wheeler C, Raskatov JA. Amyloid-α Peptide Formed through Alternative Processing of the Amyloid Precursor Protein Attenuates Alzheimer's Amyloid-β Toxicity via Cross-Chaperoning. J Am Chem Soc 2024; 146:2634-2645. [PMID: 38236059 DOI: 10.1021/jacs.3c11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Amyloid aggregation is a key feature of Alzheimer's disease (AD) and a primary target for past and present therapeutic efforts. Recent research is making it increasingly clear that the heterogeneity of amyloid deposits, extending past the commonly targeted amyloid-β (Aβ), must be considered for successful therapy. We recently demonstrated that amyloid-α (Aα or p3), a C-terminal peptidic fragment of Aβ, aggregates rapidly to form amyloids and can expedite the aggregation of Aβ through seeding. Here, we advance the understanding of Aα biophysics and biology in several important ways. We report the first cryogenic electron microscopy (cryo-EM) structure of an Aα amyloid fibril, proving unambiguously that the peptide is fibrillogenic. We demonstrate that Aα induces Aβ to form amyloid aggregates that are less toxic than pure Aβ aggregates and use nuclear magnetic resonance spectroscopy (NMR) to provide insights into specific interactions between Aα and Aβ in solution. This is the first evidence that Aα can coassemble with Aβ and alter its biological effects at relatively low concentrations. Based on the above, we urge researchers in the field to re-examine the significance of Aα in AD.
Collapse
Affiliation(s)
- Ariel J Kuhn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Ka Chan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Maria Sajimon
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Stan Yoo
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Vitor Hugo Balasco Serrão
- Biomolecular Cryoelectron Microscopy Facility, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Jack Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Benjamin Abrams
- Department of Biomolecular Engineering, Life Sciences Microscopy Center, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, Florida 33612, United States
| | - Christopher Wheeler
- World Brain Mapping Foundation, Society for Brain Mapping & Therapeutics, 860 Via De La Paz, Suite E-1, Pacific Palisades, California 90272-3668, United States
- StemVax Therapeutics (Subsidiary of NovAccess Global), 8584 E. Washington Street #127, Chagrin Falls, Ohio 44023, United States
- StemVax Therapeutics (Subsidiary of NovAccess Global), 2265 E. Foothill Boulevard, Pasadena, California 91107, United States
- T-Neuro Pharma, 1451 Innovation Parkway SE, Suite 600, Albuquerque, New Mexico 87123, United States
- T-Neuro Pharma, P.O. Box 781, Aptos, California 95003, United States
| | - Jevgenij A Raskatov
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
6
|
Ichimata S, Martinez-Valbuena I, Lee S, Li J, Karakani AM, Kovacs GG. Distinct Molecular Signatures of Amyloid-Beta and Tau in Alzheimer's Disease Associated with Down Syndrome. Int J Mol Sci 2023; 24:11596. [PMID: 37511361 PMCID: PMC10380583 DOI: 10.3390/ijms241411596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Limited comparative data exist on the molecular spectrum of amyloid-beta (Aβ) and tau deposition in individuals with Down syndrome (DS) and sporadic Alzheimer's disease (sAD). We assessed Aβ and tau deposition severity in the temporal lobe and cerebellum of ten DS and ten sAD cases. Immunohistochemistry was performed using antibodies against eight different Aβ epitopes (6F/3D, Aβ38, Aβ39, Aβ40, Aβ42, Aβ43, pyroglutamate Aβ at third glutamic acid (AβNp3E), phosphorylated- (p-)Aβ at 8th serine (AβpSer8)), and six different pathological tau epitopes (p-Ser202/Thr205, p-Thr231, p-Ser396, Alz50, MC1, GT38). Findings were evaluated semi-quantitatively and quantitatively using digital pathology. DS cases had significantly higher neocortical parenchymal deposition (Aβ38, Aβ42, and AβpSer8), and cerebellar parenchymal deposition (Aβ40, Aβ42, AβNp3E, and AβpSer8) than sAD cases. Furthermore, DS cases had a significantly larger mean plaque size (6F/3D, Aβ42, AβNp3E) in the temporal lobe, and significantly greater deposition of cerebral and cerebellar Aβ42 than sAD cases in the quantitative analysis. Western blotting corroborated these findings. Regarding tau pathology, DS cases had significantly more severe cerebral tau deposition than sAD cases, especially in the white matter (p-Ser202/Thr205, p-Thr231, Alz50, and MC1). Greater total tau deposition in the white matter (p-Ser202/Thr205, p-Thr231, and Alz50) of DS cases was confirmed by quantitative analysis. Our data suggest that the Aβ and tau molecular signatures in DS are distinct from those in sAD.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Ali M. Karakani
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
- Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
7
|
Thacker D, Willas A, Dear AJ, Linse S. Role of Hydrophobicity at the N-Terminal Region of Aβ42 in Secondary Nucleation. ACS Chem Neurosci 2022; 13:3477-3487. [PMID: 36411082 PMCID: PMC9732875 DOI: 10.1021/acschemneuro.2c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
The self-assembly of the amyloid β 42 (Aβ42) peptide is linked to Alzheimer's disease, and oligomeric intermediates are linked to neuronal cell death during the pathology of the disease. These oligomers are produced prolifically during secondary nucleation, by which the aggregation of monomers is catalyzed on fibril surfaces. Significant progress has been made in understanding the aggregation mechanism of Aβ42; still, a detailed molecular-level understanding of secondary nucleation is lacking. Here, we explore the role of four hydrophobic residues on the unstructured N-terminal region of Aβ42 in secondary nucleation. We create eight mutants with single substitutions at one of the four positions─Ala2, Phe4, Tyr10, and Val12─to decrease the hydrophobicity at respective positions (A2T, A2S, F4A, F4S, Y10A, Y10S, V12A, and V12S) and one mutant (Y10F) to remove the polar nature of Tyr10. Kinetic analyses of aggregation data reveal that the hydrophobicity at the N-terminal region of Aβ42, especially at positions 10 and 12, affects the rate of fibril mass generated via secondary nucleation. Cryo-electron micrographs reveal that most of the mutants with lower hydrophobicity form fibrils that are markedly longer than WT Aβ42, in line with the reduced secondary nucleation rates for these peptides. The dominance of secondary nucleation, however, is still retained in the aggregation mechanism of these mutants because the rate of primary nucleation is even more reduced. This highlights that secondary nucleation is a general phenomenon that is not dependent on any one particular feature of the peptide and is rather robust to sequence perturbations.
Collapse
Affiliation(s)
- Dev Thacker
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| | - Amanda Willas
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| | - Alexander J. Dear
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Sara Linse
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| |
Collapse
|
8
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
9
|
Amyloid beta and its naturally occurring N-terminal variants are potent activators of human and mouse formyl peptide receptor 1. J Biol Chem 2022; 298:102642. [PMID: 36309087 PMCID: PMC9694488 DOI: 10.1016/j.jbc.2022.102642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Formyl peptide receptors (FPRs) may contribute to inflammation in Alzheimer's disease through interactions with neuropathological Amyloid beta (Aβ) peptides. Previous studies reported activation of FPR2 by Aβ1-42, but further investigation of other FPRs and Aβ variants is needed. This study provides a comprehensive overview of the interactions of mouse and human FPRs with different physiologically relevant Aβ-peptides using transiently transfected cells in combination with calcium imaging. We observed that, in addition to hFPR2, all other hFPRs also responded to Aβ1-42, Aβ1-40, and the naturally occurring variants Aβ11-40 and Aβ17-40. Notably, Aβ11-40 and Aβ17-40 are very potent activators of mouse and human FPR1, acting at nanomolar concentrations. Buffer composition and aggregation state are extremely crucial factors that critically affect the interaction of Aβ with different FPR subtypes. To investigate the physiological relevance of these findings, we examined the effects of Aβ11-40 and Aβ17-40 on the human glial cell line U87. Both peptides induced a strong calcium flux at concentrations that are very similar to those obtained in experiments for hFPR1 in HEK cells. Further immunocytochemistry, qPCR, and pharmacological experiments verified that these responses were primarily mediated through hFPR1. Chemotaxis experiments revealed that Aβ11-40 but not Aβ17-40 evoked cell migration, which argues for a functional selectivity of different Aβ peptides. Together, these findings provide the first evidence that not only hFPR2 but also hFPR1 and hFPR3 may contribute to neuroinflammation in Alzheimer's disease through an interaction with different Aβ variants.
Collapse
|
10
|
Argudo PG, Giner-Casares JJ. Folding and self-assembly of short intrinsically disordered peptides and protein regions. NANOSCALE ADVANCES 2021; 3:1789-1812. [PMID: 36133101 PMCID: PMC9417027 DOI: 10.1039/d0na00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 05/15/2023]
Abstract
Proteins and peptide fragments are highly relevant building blocks in self-assembly for nanostructures with plenty of applications. Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are defined by the absence of a well-defined secondary structure, yet IDPs/IDRs show a significant biological activity. Experimental techniques and computational modelling procedures for the characterization of IDPs/IDRs are discussed. Directed self-assembly of IDPs/IDRs allows reaching a large variety of nanostructures. Hybrid materials based on the derivatives of IDPs/IDRs show a promising performance as alternative biocides and nanodrugs. Cell mimicking, in vivo compartmentalization, and bone regeneration are demonstrated for IDPs/IDRs in biotechnological applications. The exciting possibilities of IDPs/IDRs in nanotechnology with relevant biological applications are shown.
Collapse
Affiliation(s)
- Pablo G Argudo
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO 16 Avenue Pey-Berland 33600 Pessac France
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO) Campus de Rabanales, Ed. Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
11
|
Jęśko H, Cieślik M, Gromadzka G, Adamczyk A. Dysfunctional proteins in neuropsychiatric disorders: From neurodegeneration to autism spectrum disorders. Neurochem Int 2020; 141:104853. [PMID: 32980494 DOI: 10.1016/j.neuint.2020.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Despite fundamental differences in disease course and outcomes, neurodevelopmental (autism spectrum disorders - ASD) and neurodegenerative disorders (Alzheimer's disease - AD and Parkinson's disease - PD) present surprising, common traits in their molecular pathomechanisms. Uncontrolled oligomerization and aggregation of amyloid β (Aβ), microtubule-associated protein (MAP) tau, or α-synuclein (α-syn) contribute to synaptic impairment and the ensuing neuronal death in both AD and PD. Likewise, the pathogenesis of ASD may be attributed, at least in part, to synaptic dysfunction; attention has also been recently paid to irregularities in the metabolism and function of the Aβ precursor protein (APP), tau, or α-syn. Commonly affected elements include signaling pathways that regulate cellular metabolism and survival such as insulin/insulin-like growth factor (IGF) - PI3 kinase - Akt - mammalian target of rapamycin (mTOR), and a number of key synaptic proteins critically involved in neuronal communication. Understanding how these shared pathomechanism elements operate in different conditions may help identify common targets and therapeutic approaches.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Magdalena Cieślik
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Grażyna Gromadzka
- Cardinal Stefan Wyszynski University, Faculty of Medicine. Collegium Medicum, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Agata Adamczyk
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
12
|
Lozupone M, Solfrizzi V, D'Urso F, Di Gioia I, Sardone R, Dibello V, Stallone R, Liguori A, Ciritella C, Daniele A, Bellomo A, Seripa D, Panza F. Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opin Emerg Drugs 2020; 25:319-335. [PMID: 32772738 DOI: 10.1080/14728214.2020.1808621] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Currently available Alzheimer's disease (AD) therapeutics are only symptomatic, targeting cholinergic and glutamatergic neurotransmissions. Several putative disease-modifying drugs in late-stage clinical development target amyloid-β (Aβ) peptide and tau protein, the principal neurophatological hallmarks of the disease. AREAS COVERED Phase III randomized clinical trials of anti-Aβ drugs for AD treatment were searched in US and EU clinical trial registries and principal biomedical databases until May 2020. EXPERT OPINION At present, compounds in Phase III clinical development for AD include four anti-Ab monoclonal antibodies (solanezumab, gantenerumab, aducanumab, BAN2401), the combination of cromolyn sodium and ibuprofen (ALZT-OP1), and two small molecules (levetiracetam, GV-971). These drugs are mainly being tested in subjects during early AD phases or at preclinical stage of familial AD or even in asymptomatic subjects at high risk of developing AD. The actual results support the hypothesis that elevated Aβ represents an early stage in the AD continuum and demonstrate the feasibility of enrolling these high-risk participants in secondary prevention trials to slow cognitive decline during the AD preclinical stages. However, a series of clinical failures may question further development of Aβ-targeting drugs and the findings from current ongoing Phase III trials will hopefully give light to this critical issue.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro" , Bari, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Ilaria Di Gioia
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Rodolfo Sardone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Vittorio Dibello
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy.,Department of Orofacial Pain and Dysfunction, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , The Netherlands
| | - Roberta Stallone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Angelo Liguori
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Chiara Ciritella
- Physical and Rehabilitation Medicine Department, University of Foggia , Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart , Rome, Italy.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo Della Sofferenza , Foggia, Italy.,Hematology and Stem Cell Transplant Unit, Vito Fazzi Hospital, ASL Lecce , Lecce, Italy
| | - Francesco Panza
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| |
Collapse
|
13
|
Samdin TD, Wierzbicki M, Kreutzer AG, Howitz WJ, Valenzuela M, Smith A, Sahrai V, Truex NL, Klun M, Nowick JS. Effects of N-Terminal Residues on the Assembly of Constrained β-Hairpin Peptides Derived from Aβ. J Am Chem Soc 2020; 142:11593-11601. [PMID: 32501687 DOI: 10.1021/jacs.0c05186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper describes the synthesis, solution-phase biophysical studies, and X-ray crystallographic structures of hexamers formed by macrocyclic β-hairpin peptides derived from the central and C-terminal regions of Aβ, which bear "tails" derived from the N-terminus of Aβ. Soluble oligomers of the β-amyloid peptide, Aβ, are thought to be the synaptotoxic species responsible for neurodegeneration in Alzheimer's disease. Over the last 20 years, evidence has accumulated that implicates the N-terminus of Aβ as a region that may initiate the formation of damaging oligomeric species. We previously studied, in our laboratory, macrocyclic β-hairpin peptides derived from Aβ16-22 and Aβ30-36, capable of forming hexamers that can be observed by X-ray crystallography and SDS-PAGE. To better mimic oligomers of full length Aβ, we use an orthogonal protecting group strategy during the synthesis to append residues from Aβ1-14 to the parent macrocyclic β-hairpin peptide 1, which comprises Aβ16-22 and Aβ30-36. The N-terminally extended peptides N+1, N+2, N+4, N+6, N+8, N+10, N+12, and N+14 assemble to form dimers, trimers, and hexamers in solution-phase studies. X-ray crystallography reveals that peptide N+1 assembles to form a hexamer that is composed of dimers and trimers. These observations are consistent with a model in which the assembly of Aβ oligomers is driven by hydrogen bonding and hydrophobic packing of the residues from the central and C-terminal regions, with the N-terminus of Aβ accommodated by the oligomers as an unstructured tail.
Collapse
Affiliation(s)
- Tuan D Samdin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Michał Wierzbicki
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Adam G Kreutzer
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J Howitz
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Mike Valenzuela
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Alberto Smith
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Victoria Sahrai
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Nicholas L Truex
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Matthew Klun
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Department of Pharmaceutical Sciences, University of California, Irvine Irvine, California 92697-2025, United States
| |
Collapse
|
14
|
Kuhn AJ, Abrams BS, Knowlton S, Raskatov JA. Alzheimer's Disease "Non-amyloidogenic" p3 Peptide Revisited: A Case for Amyloid-α. ACS Chem Neurosci 2020; 11:1539-1544. [PMID: 32412731 DOI: 10.1021/acschemneuro.0c00160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amyloid-β (Aβ) is an intrinsically disordered peptide thought to play an important role in Alzheimer's disease (AD). It has been the target of most AD therapeutic efforts, which have repeatedly failed in clinical trials. A more predominant peptidic fragment, formed through alternative processing of the amyloid precursor protein, is the p3 peptide. p3 has received little attention, which is possibly due to the prevailing view in the AD field that it is "non-amyloidogenic." By probing the self-assembly of this peptide, we found that p3 aggregates to form oligomers and fibrils and, when compared with Aβ, displays enhanced aggregation rates. Our findings highlight the solubilizing effect of the N-terminus of Aβ and the favorable formation of structures formed through C-terminal hydrophobic peptide interfaces. Based on our findings, we suggest a reevaluation of the current therapeutic approaches targeting only the β-secretase pathway of AD, given that the α- secretase pathway is also amyloidogenic.
Collapse
Affiliation(s)
- Ariel J. Kuhn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Benjamin S. Abrams
- Department of Biomolecular Engineering, Life Sciences Microscopy Center, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Stella Knowlton
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Jevgenij A. Raskatov
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|