1
|
Rao SP, Imam-Fulani AO, Xie W, Phillip S, Chennavajula K, Lind EB, Zhang Y, Vince R, Lee MK, More SS. Oral prodrug of a novel glutathione surrogate reverses metabolic dysregulation and attenuates neurodegenerative process in APP/PS1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633247. [PMID: 39868172 PMCID: PMC11761491 DOI: 10.1101/2025.01.15.633247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Glycation-induced oxidative stress underlies the numerous metabolic ravages of Alzheimer's disease (AD). Reduced glutathione levels in AD lead to increased oxidative stress, including glycation-induced pathology. Previously, we showed that the accumulation of reactive 1,2-dicarbonyls such as methylglyoxal, the major precursor of non-enzymatic glycation products, was reduced by the increased function of GSH-dependent glyoxalase-1 enzyme in the brain. In this two-pronged study, we evaluate the therapeutic efficacy of an orally bioavailable prodrug of our lead glyoxalase substrate, pro-ψ-GSH, for the first time in a transgenic Alzheimer's disease mouse model. This prodrug delivers pharmacodynamically relevant brain concentrations of ψ-GSH upon oral delivery. Chronic oral dosing of pro-ψ-GSH effectively reverses the cognitive decline observed in the APP/PS1 mouse model. The prodrug successfully mirrors the robust effects of the parent drug i.e., reducing amyloid pathology, glycation stress, neuroinflammation, and the resultant neurodegeneration in these mice. We also report the first metabolomics study of such a treatment, which yields key biomarkers linked to the reversal of AD-related metabolic dysregulation. Collectively, this study establishes pro-ψ-GSH as a viable, disease-modifying therapy for AD and paves the way for further preclinical advancement of such therapeutics. Metabolomic signatures identified could prove beneficial in the development of treatment-specific clinically translatable biomarkers.
Collapse
Affiliation(s)
- Swetha Pavani Rao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aminat O. Imam-Fulani
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Samuel Phillip
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Krishna Chennavajula
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erin B. Lind
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Ahmad S, Wu T, Arnold M, Hankemeier T, Ghanbari M, Roshchupkin G, Uitterlinden AG, Neitzel J, Kraaij R, Van Duijn CM, Arfan Ikram M, Kaddurah-Daouk R, Kastenmüller G. The blood metabolome of cognitive function and brain health in middle-aged adults - influences of genes, gut microbiome, and exposome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.16.24317793. [PMID: 39763567 PMCID: PMC11702749 DOI: 10.1101/2024.12.16.24317793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Increasing evidence suggests the involvement of metabolic alterations in neurological disorders, including Alzheimer's disease (AD), and highlights the significance of the peripheral metabolome, influenced by genetic factors and modifiable environmental exposures, for brain health. In this study, we examined 1,387 metabolites in plasma samples from 1,082 dementia-free middle-aged participants of the population-based Rotterdam Study. We assessed the relation of metabolites with general cognition (G-factor) and magnetic resonance imaging (MRI) markers using linear regression and estimated the variance of these metabolites explained by genes, gut microbiome, lifestyle factors, common clinical comorbidities, and medication using gradient boosting decision tree analysis. Twenty-one metabolites and one metabolite were significantly associated with total brain volume and total white matter lesions, respectively. Fourteen metabolites showed significant associations with G-factor, with ergothioneine exhibiting the largest effect (adjusted mean difference = 0.122, P = 4.65×10-7). Associations for nine of the 14 metabolites were replicated in an independent, older cohort. The metabolite signature of incident AD in the replication cohort resembled that of cognition in the discovery cohort, emphasizing the potential relevance of the identified metabolites to disease pathogenesis. Lifestyle, clinical variables, and medication were most important in determining these metabolites' blood levels, with lifestyle, explaining up to 28.6% of the variance. Smoking was associated with ten metabolites linked to G-factor, while diabetes and antidiabetic medication were associated with 13 metabolites linked to MRI markers, including N-lactoyltyrosine. Antacid medication strongly affected ergothioneine levels. Mediation analysis revealed that lower ergothioneine levels may partially mediate negative effects of antacids on cognition (31.5%). Gut microbial factors were more important for the blood levels of metabolites that were more strongly associated with cognition and incident AD in the older replication cohort (beta-cryptoxanthin, imidazole propionate), suggesting they may be involved later in the disease process. The detailed results on how multiple modifiable factors affect blood levels of cognition- and brain imaging-related metabolites in dementia-free participants may help identify new AD prevention strategies.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Tong Wu
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Gennady Roshchupkin
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Julia Neitzel
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Cornelia M. Van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
3
|
Zhao Z, Xing N, Sun G. Identification of 7-HOCA as a Potential Biomarker in Glioblastoma: Evidence from Genome-Wide Association Study and Clinical Validation. Int J Gen Med 2024; 17:6185-6197. [PMID: 39691836 PMCID: PMC11651077 DOI: 10.2147/ijgm.s493488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Purpose Glioblastoma (GBM) is associated with metabolic disturbances, yet the relationships between metabolites with GBM have not been comprehensively explored. This study aims to fill this gap by integrating Mendelian randomization (MR) analysis with clinical validation. Patients and Methods Summary data from genome-wide association study (GWAS) of cerebrospinal fluid (CSF) metabolites, plasma metabolites, and GBM were obtained separately. A total of 338 CSF metabolites and 1400 plasma metabolites were utilized as exposures. Concurrently, GBM was designated as the outcome. A two-sample bidirectional MR study was conducted to investigate the potential association. The inverse variance weighted (IVW) analyses were conducted as causal estimates, accompanied by a series of sensitivity analyses to evaluate the robustness of the results. Additionally, metabolite levels in clinical plasma and CSF samples were quantified using liquid chromatography-mass spectrometry to validate the findings. Results MR analysis identified eight CSF metabolites and six plasma metabolites that were closely associated with GBM. Among these, elevated levels of 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-HOCA) in both CSF and plasma were found to promote GBM. In terms of clinical validation, compared to the control group, 7-HOCA levels were significantly higher in both the CSF and plasma of GBM group. Conclusion This study provides a comprehensive analysis of the metabolic factors contributing to GBM. The identification of specific metabolites, particularly 7-HOCA, that have vital roles in GBM pathogenesis suggests new biomarkers and therapeutic targets, offering potential pathways for improved diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
4
|
Wang K, Yang J, Xu W, Wang L, Wang Y. Interplay between immune cells and metabolites in epilepsy: insights from a Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1400426. [PMID: 39170897 PMCID: PMC11335650 DOI: 10.3389/fnagi.2024.1400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Epilepsy is associated with the immune system and metabolism; however, its etiology remains insufficiently understood. Here, we aim to elucidate whether circulating immune cell profiles and metabolites impact the susceptibility to epilepsy. Methods We used publicly available genetic data and two-sample Mendelian randomization (MR) analyses to establish causal relationships and mediating effects between 731 immune cells and 1,400 metabolites associated with epilepsy. Sensitivity analyses were conducted to detect heterogeneity and horizontal pleiotropy in the study results. Results MR analysis examining the relationship between immune cells, metabolites, and epilepsy revealed significant causal associations with 28 different subtypes of immune cells and 14 metabolites. Besides, the mediation effects analysis revealed that eight metabolites mediated the effects of six types of immune cells on epilepsy and that 3-hydroxyoctanoylcarnitine (2) levels exhibited the highest mediating effect, mediating 15.3% (95%CI, -0.008, -30.6%, p = 0.049) of the effect of DN (CD4-CD8-) AC on epilepsy. 1-(1-enyl-stearoyl)-2-linoleoyl-GPE (p-18:0/18:2) levels (95%CI, 0.668, 10.6%, p = 0.026) and X-12544 levels (95%CI, -15.1, -0.856%, p = 0.028) contributed 5.63 and 8%, respectively, to the causal effect of FSC-A on myeloid DC on epilepsy. Conclusion This study revealed a significant causal link between immune cells, metabolites, and epilepsy. It remarkably enhances our understanding of the interplay between immune responses, metabolites, and epilepsy risk, providing insights into the development of therapeutic strategies from both immune and metabolic perspectives.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinwei Yang
- Department of Neurology, The Affiliated Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Wenhao Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Nasab AS, Noorani F, Paeizi Z, Khani L, Banaei S, Sadeghi M, Shafeghat M, Shafie M, Mayeli M, Initiative (ADNI) TADN. A Comprehensive Investigation of the Potential Role of Lipoproteins and Metabolite Profile as Biomarkers of Alzheimer's Disease Compared to the Known CSF Biomarkers. Int J Alzheimers Dis 2023; 2023:3540020. [PMID: 36936136 PMCID: PMC10019964 DOI: 10.1155/2023/3540020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction While cerebrospinal fluid (CSF) core biomarkers have been considered diagnostic biomarkers for a long time, special attention has been recently dedicated to lipoproteins and metabolites that could be potentially associated with Alzheimer's disease (AD) neurodegeneration. Herein, we aimed to investigate the relationship between the levels of CSF core biomarkers including Aβ-42, TAU, and P-TAU and plasma lipoproteins and metabolites of patients with AD from the baseline cohort of the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Method Using the ADNI database, fourteen subclasses of lipoproteins as well as a number of lipids and fatty acids and low-molecular metabolites including amino acids, ketone bodies, and glycolysis-related metabolites in blood samples were measured as potential noninvasive markers, and their association with the CSF core biomarkers was statistically investigated controlling for age and gender. Results A total number of 251 AD subjects were included, among whom 71 subjects were negative for the Apo-E ε4 allele and 150 were positive. There was no significant difference between the two groups regarding cognitive assessments, CSF core biomarkers, and lipoproteins and metabolites except the level of Aβ-42 (p < 0.001) and phenylalanine (p = 0.049), which were higher in the negative group. CSF TAU and P-TAU were significantly correlated with medium and small HDL in the negative group, and with extremely large VLDL in the positive group. Our results also indicated significant correlations of metabolites including unsaturated fatty acids, glycerol, and leucine with CSF core biomarkers. Conclusion Based on our findings, a number of lipoproteins and metabolites were associated with CSF core biomarkers of AD. These correlations showed some differences in Apo-E ε4 positive and negative groups, which reminds the role of Apo-E gene status in the pathophysiology of AD development. However, further research is warranted to explore the exact association of lipoproteins and other metabolites with AD core biomarkers and pathology.
Collapse
Affiliation(s)
- Azam Sajjadi Nasab
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Noorani
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Paeizi
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Khani
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Banaei
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadeghi
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Shafeghat
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- 2School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahan Shafie
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- 2School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mayeli
- 1NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- 2School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Liu J, Zhou Y, Liu H, Ma M, Wang F, Liu C, Yuan Q, Wang H, Hou X, Yin P. Metabolic reprogramming enables the auxiliary diagnosis of breast cancer by automated breast volume scanner. Front Oncol 2022; 12:939606. [PMCID: PMC9597368 DOI: 10.3389/fonc.2022.939606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of female cancer-related deaths worldwide. New technologies with enhanced sensitivity and specificity for early diagnosis and monitoring of postoperative recurrence are in critical demand. Automatic breast full volume scanning system (ABVS) is an emerging technology used as an alternative imaging method for breast cancer screening. Despite its improved detection rate of malignant tumors, ABVS cannot accurately stage breast cancer preoperatively in 30–40% of cases. As a major hallmark of breast cancer, the characteristic metabolic reprogramming may provide potential biomarkers as an auxiliary method for ABVS.ObjectiveThe objective of this study was to identify differential metabolomic signatures between benign and malignant breast tumors and among different subtypes of breast cancer patients based on untargeted metabolomics and improve breast cancer detection rate by combining key metabolites and ABVS.MethodsUntargeted metabolomics approach was used to profile serum samples from 70 patients with different subtypes of breast cancer and benign breast tumor to determine specific metabolomic profiles through univariate and multivariate statistical data analysis.ResultsMetabolic profiles correctly distinguished benign and malignant breast tumors patients, and a total of 791 metabolites were identified. There were 54 different metabolites between benign and malignant breast tumors and 17 different metabolites between invasive and non-invasive breast cancer. Notably, the missed diagnosis rate of ABVS could be reduced by differential metabolite analysis. Moreover, the diagnostic performance analyses of combined metabolites (pelargonic acid, N-acetylasparagine, and cysteine-S-sulfate) with ABVS performance gave a ROC area under the curve of 0.967 (95% CI: 0.926, 0.993).ConclusionsOur study identified metabolic features both in benign and malignant breast tumors and in invasive and non-invasive breast cancer. Combined ultrasound ABVS and a panel of differential serum metabolites could further improve the accuracy of preoperative diagnosis of breast cancer and guide surgical therapy.
Collapse
Affiliation(s)
- Jianjun Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yang Zhou
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiying Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengyan Ma
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fei Wang
- Breast Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongjiang Wang
- Breast Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiukun Hou
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Xiukun Hou,
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Xiukun Hou,
| |
Collapse
|
7
|
Metabolites Associated with Memory and Gait: A Systematic Review. Metabolites 2022; 12:metabo12040356. [PMID: 35448544 PMCID: PMC9024701 DOI: 10.3390/metabo12040356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023] Open
Abstract
We recently found that dual decline in memory and gait speed was consistently associated with an increased risk of dementia compared to decline in memory or gait only or no decline across six aging cohorts. The mechanisms underlying this relationship are unknown. We hypothesize that individuals who experience dual decline may have specific pathophysiological pathways to dementia which can be indicated by specific metabolomic signatures. Here, we summarize blood-based metabolites that are associated with memory and gait from existing literature and discuss their relevant pathways. A total of 39 eligible studies were included in this systematic review. Metabolites that were associated with memory and gait belonged to five shared classes: sphingolipids, fatty acids, phosphatidylcholines, amino acids, and biogenic amines. The sphingolipid metabolism pathway was found to be enriched in both memory and gait impairments. Existing data may suggest that metabolites from sphingolipids and the sphingolipid metabolism pathway are important for both memory and gait impairments. Future studies using empirical data across multiple cohorts are warranted to identify metabolomic signatures of dual decline in memory and gait and to further understand its relationship with future dementia risk.
Collapse
|
8
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|