1
|
Chen H, Deng C, Meng Z, Zhu M, Yang R, Yuan J, Meng S. Combined Catalpol and Tetramethylpyrazine Promote Axonal Plasticity in Alzheimer's Disease by Inducing Astrocytes to Secrete Exosomes Carrying CDK5 mRNA and Regulating STAT3 Phosphorylation. Mol Neurobiol 2024; 61:10770-10791. [PMID: 38789892 DOI: 10.1007/s12035-024-04251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a common progressive degenerative disease of the central nervous system in aging populations. This study aimed to investigate the effects of combined catalpol and tetramethylpyrazine (CT) in promoting axonal plasticity in AD and the potential underlying mechanism. Astrocytes were treated with different concentrations of compatible CT. Exosomes were collected and subjected to sequencing analysis, which was followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes. Amyloid precursor protein/presenilin 1 (APP/PS1) double-transfected male mice were used as the in vivo AD models. Astrocyte-derived exosomes that were transfected with cyclin-dependent kinase 5 (CDK5) or CT treatment were injected into the tail vein of mice. The levels of CDK5, synaptic plasticity marker protein neurofilament 200 (NF200), and growth-associated protein 43 (GAP-43) in the hippocampus of mice were compared in each group. Immunofluorescence staining was used to detect the localization of STAT3 and to visualize synaptic morphology via β-tubulin-III (TUBB3). Astrocyte-derived exosomes transfected with siCDK5 or treated with CT were co-cultured with HT-22 cells, which were untransfected or silenced for signal transducer and activator of transcription 3 (STAT3). Amyloid β-protein (Aβ)1-42 was induced in the in vitro AD models. The viability, apoptosis, and expression levels of NF200 and GAP-43 proteins in the hippocampal neurons of each group were compared. In total, 166 differentially expressed genes in CT-induced astrocyte-derived exosomes were included in the KEGG analysis, and they were found to be enriched in 12 pathways, mainly in axon guidance. CT treatment significantly increased the level of CDK5 mRNA in astrocyte-derived exosomes-these exosomes restored CDK5 mRNA and protein levels in the hippocampus of the in vivo AD model mice and the in vitro AD model; promoted p-STAT3 (Ser727), NF200 and GAP-43 proteins; and promoted the regeneration and extension of neuronal synapses. Silencing of CDK5 blocked both neuronal protection as well as induction of axonal plasticity in AD by CT-treated exosomes in vitro and in vivo. Moreover, silencing of STAT3 blocked both neuronal protection as well as induction of axonal plasticity in AD caused by CDK5 overexpression or CT-treated astrocyte-induced exosomes. CT promotes axonal plasticity in AD by inducing astrocytes to secrete exosomes carrying CDK5 mRNA and regulating STAT3 (Ser727) phosphorylation.
Collapse
Affiliation(s)
- Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Zeyu Meng
- Second Clinical Medicine College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengting Zhu
- Graduate School of Jiangxi, University of Traditional Chinese Medicine, Nanchang, China
| | - Ruoyu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yuan
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Viorel VI, Pastorello Y, Bajwa N, Slevin M. p38-MAPK and CDK5, signaling pathways in neuroinflammation: a potential therapeutic intervention in Alzheimer's disease? Neural Regen Res 2024; 19:1649-1650. [PMID: 38103224 PMCID: PMC10960271 DOI: 10.4103/1673-5374.389645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Vlad Ionut Viorel
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| | - Ylenia Pastorello
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| | | | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
- Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Discovery of novel donepezil-M30D hybrids with neuroprotective properties for Alzheimer’s disease treatment. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02886-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Rao KSJ, Britton GB, Rocha Arrieta LL, Garcia-Cairasco N, Lazarowski A, Palacios A, Camins Espuny A, Maccioni RB. Translational Research and Drug Discovery for Neurodegeneration: Challenges for Latin America. J Alzheimers Dis 2021; 82:S1-S4. [PMID: 34092644 DOI: 10.3233/jad-210245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- K S Jagannatha Rao
- Centro de Neurociencia, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, AIP (INDICASAT AIP), Panamá and Sistema Nacional de Investigación (SNI), SENACYT, Panamá
| | - Gabrielle B Britton
- Centro de Neurociencia, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, AIP (INDICASAT AIP), Panamá and Sistema Nacional de Investigación (SNI), SENACYT, Panamá
| | - Luisa Lilia Rocha Arrieta
- Depto. Farmacobiología del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | - Norberto Garcia-Cairasco
- Full Professor of Physiology (Neurophysiology), Director of the Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brasil
| | - Alberto Lazarowski
- Instituto de Fidiopatologia y Bioquímica Clínica (INFIBIOC), Facultad de Farrmacia y Biouimican (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Adrián Palacios
- Centro Interdisciplinario de Neurociencia de Valparaiso, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile
| | - Antoni Camins Espuny
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Barcelona, Spain
| | - Ricardo B Maccioni
- Full Professor, Departamento de Neurología y Neurocirugía, University of Chile, Santiago, Chile
| |
Collapse
|