1
|
Poptsi E, Moraitou D, Tsardoulias E, Symeonidis AL, Tsolaki M. R4Alz-R: a cutting-edge tool for spotting the very first and subtle signs of aging-related cognitive impairment with high accuracy. GeroScience 2024:10.1007/s11357-024-01495-4. [PMID: 39729240 DOI: 10.1007/s11357-024-01495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The accurate diagnosis of aging-related neurocognitive disorders as early as possible, even in a phase that is characterized by the absence of clinical symptoms, is nowadays the holy grail of the neurosciences. R4Alz-R is a novel cognitive tool designed to objectively detect the subtle cognitive changes that emerge as the very first result of the aging processes and could be developed and broadened in a continuum from healthy aging to subjective cognitive impairment (SCI) and mild cognitive impairment (MCI), before reaching some type of dementia. The goal of the present study was to examine whether the R4Alz-R battery has the potential to detect these subtle changes. The study sample comprised 184 people divided into (a) cognitively healthy young adults (HCya), (b) cognitively healthy older adults (HCoa), (c) people diagnosed with SCI, and (d) people diagnosed with MCI. The R4Alz-R comprises tests examining short-term memory storage, information processing, and updating of working memory, attention in different types of it, and main dimensions of executive functioning such as set-shifting, inhibitory control, and cognitive flexibility, as well as episodic memory. The flexibility and attention score showed an excellent potential to discriminate HCya from SCI (AUC 0.936, sensitivity 89.7%, specificity 88.4%). The executive functioning score almost excellently discriminated HCoa from SCI (AUC 0.898, sensitivity 87%, specificity 76.5%), while the fluid intelligence score had also an excellent potential to discriminate HCoa from MCI (AUC 0.953, sensitivity 85.7%, specificity 94.1%). The findings show that cognitive impairment in aging may start from the frontal lobe and prefrontal cortex, areas more closely related to cognitive control rather than memory. The lack of significant differences between HCya and HCoa proves that healthy older adults can keep their cognition at almost the same level as younger adults, a finding consistent with the new theoretical models regarding aging. The R4Alz-R battery is an innovative, free-of-demographic effect, valid, and reliable tool that can provide a highly accurate diagnosis of aging-related cognitive decline in its beginnings when it could still be possible to be reversed.
Collapse
Affiliation(s)
- Eleni Poptsi
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124, Thessaloniki, Greece.
- Greek Association of Alzheimer's Disease and Related Disorders (GAADRD), Petrou Sindika 13 Str, 54643, Thessaloniki, Greece.
| | - Despina Moraitou
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124, Thessaloniki, Greece
| | - Emmanouil Tsardoulias
- School of Electrical and Computer Engineering, Faculty of Engineering , Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Andreas L Symeonidis
- School of Electrical and Computer Engineering, Faculty of Engineering , Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Magda Tsolaki
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124, Thessaloniki, Greece
- Greek Association of Alzheimer's Disease and Related Disorders (GAADRD), Petrou Sindika 13 Str, 54643, Thessaloniki, Greece
| |
Collapse
|
2
|
Du Y, Geng P, Chen Q, Han L, Liu L, Yang M, Tan M, Meng J, Sun X, Feng L. Associations of vitamin D receptor polymorphisms with risk of Alzheimer's disease, Parkinson's disease, and mild cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1377058. [PMID: 38681668 PMCID: PMC11047136 DOI: 10.3389/fnagi.2024.1377058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Vitamin D is a lipid soluble steroid hormone, which plays a critical role in the calcium homeostasis, neuronal development, cellular differentiation, and growth by binding to vitamin D receptor (VDR). Associations between VDR gene polymorphism and Alzheimer's disease (AD), Parkinson's disease (PD), and mild cognitive impairment (MCI) risk has been investigated extensively, but the results remain ambiguous. The aim of this study was to comprehensively assess the correlations between four VDR polymorphisms (FokI, BsmI, TaqI, and ApaI) and susceptibility to AD, PD, and MCI. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the relationship of interest. Pooled analyses suggested that the ApaI polymorphism decreased the overall AD risk, and the TaqI increased the overall PD susceptibility. In addition, the BsmI and ApaI polymorphisms were significantly correlated with the overall MCI risk. Stratified analysis by ethnicity further showed that the TaqI and ApaI genotypes reduced the AD predisposition among Caucasians, while the TaqI polymorphism enhanced the PD risk among Asians. Intriguingly, carriers with the BB genotype significantly decreased the MCI risk in Asian descents, and the ApaI variant elevated the predisposition to MCI in Caucasians and Asians. Further studies are need to identify the role of VDR polymorphisms in AD, PD, and MCI susceptibility.
Collapse
Affiliation(s)
- Yanjun Du
- Department of Encephalopathy, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Peizhen Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Qunqun Chen
- Department of Rehabilitation, Weifang Brain Hospital, Weifang, Shandong, China
| | - Laixi Han
- Department of Rehabilitation, Weifang Brain Hospital, Weifang, Shandong, China
| | - Lu Liu
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingzhu Tan
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Jun Meng
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xiaojuan Sun
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Lidan Feng
- Department of Rehabilitation, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
3
|
The Vitamin D Receptor as a Potential Target for the Treatment of Age-Related Neurodegenerative Diseases Such as Alzheimer's and Parkinson's Diseases: A Narrative Review. Cells 2023; 12:cells12040660. [PMID: 36831327 PMCID: PMC9954016 DOI: 10.3390/cells12040660] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.
Collapse
|
4
|
Soares JZ, Valeur J, Šaltytė Benth J, Knapskog AB, Selbæk G, Arefi G, Gilfillan DG, Tollisen A, Bogdanovic N, Pettersen R. Vitamin D in Alzheimer's Disease: Low Levels in Cerebrospinal Fluid Despite Normal Amounts in Serum. J Alzheimers Dis 2022; 86:1301-1314. [PMID: 35180126 DOI: 10.3233/jad-215536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vitamin D insufficiency has been suggested as a dementia risk factor. OBJECTIVE In this cross-sectional, explorative study we investigated whether levels of vitamin D in cerebrospinal fluid (CSF) are lower in patients with positive biomarkers of Alzheimer's disease (AD) compared to cognitively healthy controls and whether polymorphisms of the vitamin D receptor (VDR) gene, FokI, BsmI, ApaI, and TaqI, are associated with levels of vitamin D in CSF and cognition. METHODS We included 100 patients≥65 years assessed for cognitive impairment and 76 cognitively healthy controls. Levels of 25-hydroxyvitamin D (25(OH)D) in both serum and CSF, and VDR polymorphisms were analyzed. RESULTS The mean level of 25(OH)D in serum was 78.6 (SD 28.9) nmol/l. While serum levels of 25(OH)D were not significantly different between the groups, CSF levels of 25(OH)D were significantly lower in patients with positive AD core biomarkers (p = 0.001) compared to patients without such biomarkers. Individuals with the BsmI major homozygote genotype had significantly lower results on a 10-word delayed recall test (p = 0.044) and verbal fluency test (p = 0.013), and individuals with the TaqI major homozygote genotype had significantly lower results on a verbal fluency test (p = 0.030) compared to individuals with the corresponding minor homozygote genotype. CONCLUSION Patients with positive AD core biomarkers have low CSF levels of 25(OH)D, despite sufficient serum levels. CSF levels of 25(OH)D do not seem to be affected by any of the four VDR gene polymorphisms. TaqI and BsmI major homozygote genotypes might be at increased risk for development of cognitive decline.
Collapse
Affiliation(s)
- Jelena Zugic Soares
- Medical Department, Section of Geriatrics, Lovisenberg Diaconal Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway.,Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
| | | | - Geir Selbæk
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Golchin Arefi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - D Gregor Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anita Tollisen
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Nenad Bogdanovic
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.,Department for Neurobiology, Caring Science and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Renate Pettersen
- Medical Department, Section of Geriatrics, Lovisenberg Diaconal Hospital, Oslo, Norway
| |
Collapse
|
5
|
Leyton E, Matus D, Espinoza S, Benitez JM, Cortés BI, Gomez W, Arévalo NB, Murgas P, Manque P, Woehlbier U, Duran-Aniotz C, Hetz C, Behrens MI, SanMartín CD, Nassif M. DEF8 and Autophagy-Associated Genes Are Altered in Mild Cognitive Impairment, Probable Alzheimer’s Disease Patients, and a Transgenic Model of the Disease. J Alzheimers Dis 2021; 82:S163-S178. [DOI: 10.3233/jad-201264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Disturbances in the autophagy/endolysosomal systems are proposed as early signatures of Alzheimer’s disease (AD). However, few studies are available concerning autophagy gene expression in AD patients. Objective: To explore the differential expression of classical genes involved in the autophagy pathway, among them a less characterized one, DEF8 (Differentially expressed in FDCP 8), initially considered a Rubicon family member, in peripheral blood mononuclear cells (PBMCs) from individuals with mild cognitive impairment (MCI) and probable AD (pAD) and correlate the results with the expression of DEF8 in the brain of 5xFAD mice. Method: By real-time PCR and flow cytometry, we evaluated autophagy genes levels in PBMCs from MCI and pAD patients. We evaluated DEF8 levels and its localization in brain samples of the 5xFAD mice by real-time PCR, western blot, and immunofluorescence. Results: Transcriptional levels of DEF8 were significantly reduced in PBMCs of MCI and pAD patients compared with healthy donors, correlating with the MoCA and MoCA-MIS cognitive tests scores. DEF8 protein levels were increased in lymphocytes from MCI but not pAD, compared to controls. In the case of brain samples from 5xFAD mice, we observed a reduced mRNA expression and augmented protein levels in 5xFAD compared to age-matched wild-type mice. DEF8 presented a neuronal localization. Conclusion: DEF8, a protein proposed to act at the final step of the autophagy/endolysosomal pathway, is differentially expressed in PBMCs of MCI and pAD and neurons of 5xFAD mice. These results suggest a potential role for DEF8 in the pathophysiology of AD.
Collapse
Affiliation(s)
- Esteban Leyton
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Diego Matus
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Sandra Espinoza
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Matías Benitez
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I. Cortés
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Wileidy Gomez
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Nohela B. Arévalo
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Immunology Laboratory, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Claudia Duran-Aniotz
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - María Isabel Behrens
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago
| | - Carol D. SanMartín
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Melissa Nassif
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
6
|
Rao KSJ, Britton GB, Rocha Arrieta LL, Garcia-Cairasco N, Lazarowski A, Palacios A, Camins Espuny A, Maccioni RB. Translational Research and Drug Discovery for Neurodegeneration: Challenges for Latin America. J Alzheimers Dis 2021; 82:S1-S4. [PMID: 34092644 DOI: 10.3233/jad-210245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- K S Jagannatha Rao
- Centro de Neurociencia, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, AIP (INDICASAT AIP), Panamá and Sistema Nacional de Investigación (SNI), SENACYT, Panamá
| | - Gabrielle B Britton
- Centro de Neurociencia, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, AIP (INDICASAT AIP), Panamá and Sistema Nacional de Investigación (SNI), SENACYT, Panamá
| | - Luisa Lilia Rocha Arrieta
- Depto. Farmacobiología del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | - Norberto Garcia-Cairasco
- Full Professor of Physiology (Neurophysiology), Director of the Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brasil
| | - Alberto Lazarowski
- Instituto de Fidiopatologia y Bioquímica Clínica (INFIBIOC), Facultad de Farrmacia y Biouimican (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Adrián Palacios
- Centro Interdisciplinario de Neurociencia de Valparaiso, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile
| | - Antoni Camins Espuny
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Barcelona, Spain
| | - Ricardo B Maccioni
- Full Professor, Departamento de Neurología y Neurocirugía, University of Chile, Santiago, Chile
| |
Collapse
|