1
|
Lim C, Lee H, Moon Y, Han SH, Kim HJ, Chung HW, Moon WJ. Volume and Permeability of White Matter Hyperintensity on Cognition: A DCE Imaging Study of an Older Cohort With and Without Cognitive Impairment. J Magn Reson Imaging 2024. [PMID: 39425583 DOI: 10.1002/jmri.29631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The impact of blood-brain barrier (BBB) leakage on white matter hyperintensity (WMH) subtypes (location) and its association with clinical factors and cognition remains unclear. PURPOSE To investigate the relationship between WMH volume, permeability, clinical factors, and cognition in older individuals across the cognitive spectrum. STUDY TYPE Prospective, cross-sectional. SUBJECTS A total of 193 older adults with/without cognitive impairment; 128 females; mean age 70.1 years (standard deviation 6.8). FIELD STRENGTH/SEQUENCE 3 T, GE Dynamic contrast-enhanced, three-dimensional (3D) Magnetization-prepared rapid gradient-echo (MPRAGE T1WI), 3D fluid-attenuated inversion recovery (FLAIR). ASSESSMENT Periventricular WMH (PWMH), deep WMH (DWMH), and normal-appearing white matter (NAWM) were segmented using FMRIB automatic segmentation tool algorithms on 3D FLAIR. Hippocampal volume and cortex volume were segmented on 3D T1WI. BBB permeability (Ktrans) and blood plasma volume (Vp) were determined using the Patlak model. Vascular risk factors and cognition were assessed. STATISTICAL TESTS Univariate and multivariate analyses were performed to identify factors associated with WMH permeability. Logistic regression analysis assessed the association between WMH imaging features and cognition, adjusting for age, sex, apolipoprotein E4 status, education, and brain volumes. A P-value <0.05 was considered significant. RESULTS PWMH exhibited higher Ktrans (0.598 ± 0.509 × 10-3 minute-1) compared to DWMH (0.496 ± 0.478 × 10-3 minute-1) and NAWM (0.476 ± 0.398 × 10-3 minute-1). Smaller PWMH volume and cardiovascular disease (CVD) history were significantly associated with higher Ktrans in PWMH. In DWMH, higher Ktrans were associated with CVD history and cortical volume. In NAWM, it was linked to CVD history and dyslipidemia. Larger PWMH volume (odds ratio [OR] 1.106, confidence interval [CI]: 1.021-1.197) and smaller hippocampal volume (OR 0.069; CI: 0.019-0.253) were independently linked to worse global cognition after covariate adjustment. DATA CONCLUSION Elevated BBB leakage in PWMH was associated with lower PWMH volume and prior CVD history. Notably, PWMH volume, rather than permeability, was correlated with cognitive decline, suggesting that BBB leakage in WMH may be a consequence of CVD rather than indicate disease progression. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Changmok Lim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hunwoo Lee
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Hanyang University Medical Center, Hanyang University School of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Lee MW, Kim HW, Choe YS, Yang HS, Lee J, Lee H, Yong JH, Kim D, Lee M, Kang DW, Jeon SY, Son SJ, Lee YM, Kim HG, Kim REY, Lim HK. A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease. Sci Rep 2024; 14:12276. [PMID: 38806509 PMCID: PMC11133319 DOI: 10.1038/s41598-024-60134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) accounts for 60-70% of the population with dementia. Mild cognitive impairment (MCI) is a diagnostic entity defined as an intermediate stage between subjective cognitive decline and dementia, and about 10-15% of people annually convert to AD. We aimed to investigate the most robust model and modality combination by combining multi-modality image features based on demographic characteristics in six machine learning models. A total of 196 subjects were enrolled from four hospitals and the Alzheimer's Disease Neuroimaging Initiative dataset. During the four-year follow-up period, 47 (24%) patients progressed from MCI to AD. Volumes of the regions of interest, white matter hyperintensity, and regional Standardized Uptake Value Ratio (SUVR) were analyzed using T1, T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRIs, and amyloid PET (αPET), along with automatically provided hippocampal occupancy scores (HOC) and Fazekas scales. As a result of testing the robustness of the model, the GBM model was the most stable, and in modality combination, model performance was further improved in the absence of T2-FLAIR image features. Our study predicts the probability of AD conversion in MCI patients, which is expected to be useful information for clinician's early diagnosis and treatment plan design.
Collapse
Affiliation(s)
- Min-Woo Lee
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Hye Weon Kim
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Yeong Sim Choe
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Hyeon Sik Yang
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Jiyeon Lee
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Hyunji Lee
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Jung Hyeon Yong
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Minho Lee
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
- Department of Psychiatry, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Young-Min Lee
- Department of Psychiatry, Pusan National University School of Medicine, Pusan National University, Busan, 49241, Republic of Korea
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, 02447, Republic of Korea
| | - Regina E Y Kim
- Research Institute, Neurophet Inc., Seoul, 06234, Republic of Korea.
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10 63-ro, Yeongdeungpo-gu, Seoul, 07345, Korea.
- CMC Institute for Basic Medical Science, the Catholic Medical Center of The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
3
|
Kamal F, Morrison C, Maranzano J, Zeighami Y, Dadar M. White Matter Hyperintensity Trajectories in Patients With Progressive and Stable Mild Cognitive Impairment. Neurology 2023; 101:e815-e824. [PMID: 37407262 PMCID: PMC10449435 DOI: 10.1212/wnl.0000000000207514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES White matter hyperintensities (WMH) are pathologic brain changes that are associated with increased age and cognitive decline. However, the association of WMH burden with amyloid positivity and conversion to dementia in people with mild cognitive impairment (MCI) is unclear. The aim of this study was to expand on this research by examining whether change in WMH burden over time differs in amyloid-negative (Aβ-) and amyloid-positive (Aβ+) people with MCI who either remain stable or convert to dementia. To examine this question, we compared regional WMH burden in 4 groups: Aβ+ progressor, Aβ- progressor, Aβ+ stable, and Aβ- stable. METHODS Participants with MCI from the Alzheimer Disease Neuroimaging Initiative were included if they had APOE ɛ4 status and if amyloid measures were available to determine amyloid status (i.e., Aβ+, or Aβ-). Participants with a baseline diagnosis of MCI and who had APOE ɛ4 information and amyloid measures were included. An average of 5.7 follow-up time points per participant were included, with a total of 5,054 follow-up time points with a maximum follow-up duration of 13 years. Differences in total and regional WMH burden were examined using linear mixed-effects models. RESULTS A total of 820 participants (55-90 years of age) were included in the study (Aβ+ progressor, n = 239; Aβ- progressor, n = 22; Aβ+ stable, n = 343; Aβ- stable, n = 216). People who were Aβ- stable exhibited reduced baseline WMH compared with Aβ+ progressors and people who were Aβ+ stable at all regions of interest (β belongs to 0.20-0.33, CI belongs to 0.03-0.49, p < 0.02), except deep WMH. When examining longitudinal results, compared with people who were Aβ- stable, all groups had steeper accumulation in WMH burden with Aβ+ progressors (β belongs to -0.03 to 0.06, CI belongs to -0.05 to 0.09, p < 0.01) having the largest increase (i.e., largest increase in WMH accumulation over time). DISCUSSION These results indicate that WMH accumulation contributes to conversion to dementia in older adults with MCI who are Aβ+ and Aβ-.
Collapse
Affiliation(s)
- Farooq Kamal
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada.
| | - Cassandra Morrison
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada
| | - Josefina Maranzano
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada
| | - Yashar Zeighami
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada
| | - Mahsa Dadar
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada
| |
Collapse
|
4
|
Kamal F, Morrison C, Dadar M. Investigating the relationship between sleep disturbances and white matter hyperintensities in older adults on the Alzheimer's disease spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.13.23288544. [PMID: 37131746 PMCID: PMC10153314 DOI: 10.1101/2023.04.13.23288544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background While studies report that sleep disturbance can have negative effects on brain vasculature, its impact on cerebrovascular disease such as white matter hyperintensities (WMHs) in beta-amyloid positive older adults remains unexplored. Methods Linear regressions, mixed effects models, and mediation analysis examined the crosssectional and longitudinal associations between sleep disturbance, cognition, and WMH burden, and cognition in normal controls (NCs), mild cognitive impairment (MCI), and Alzheimer's disease (AD) at baseline and longitudinally. Results People with AD reported more sleep disturbance than NC and MCI. AD with sleep disturbance had more WMHs than AD without sleep disturbances. Mediation analysis revealed an effect of regional WMH burden on the relationship between sleep disturbance and future cognition. Conclusion These results suggest that WMH burden and sleep disturbance increases from aging to AD. Sleep disturbance decreases cognition through increases in WMH burden. Improved sleep could mitigate the impact of WMH accumulation and cognitive decline.
Collapse
Affiliation(s)
- Farooq Kamal
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Cassandra Morrison
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| |
Collapse
|
5
|
Association between total cerebral small vessel disease score and cognitive function in patients with vascular risk factors. Hypertens Res 2023; 46:1326-1334. [PMID: 36894746 DOI: 10.1038/s41440-023-01244-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/11/2023]
Abstract
Hypertension is the most important risk factor for cerebral small vessel disease (SVD). In this cross-sectional study, we tested the independent association of cerebral SVD burden with global cognitive function and each cognitive domain in patients with vascular risk factors. The Tokyo Women's Medical University Cerebral Vessel Disease (TWMU CVD) registry is an ongoing prospective, observational registry in which patients with any evidence of CVD in magnetic resonance imaging (MRI) and at least one vascular risk factor were consecutively enrolled. For SVD-related findings, we evaluated white matter hyperintensity, lacunar infarction, cerebral microbleeds, enlarged perivascular space, and medial temporal atrophy. We used the total SVD score as the SVD burden. They underwent the Mini-mental State Examination (MMSE) and Japanese version of the Montreal Cognitive Assessment (MoCA-J) global cognitive tests, and each cognitive domain was evaluated. After excluding patients without MRI T2* images and those with MMSE score <24, we analyzed 648 patients. The total SVD score was significantly associated with MMSE and MoCA-J scores. After adjustment for age, sex, education, risk factors, and medial temporal atrophy, the association between the total SVD score and MoCA-J score remained significant. The total SVD score was independently associated with attention. In conclusion, the total SVD score, cerebral SVD burden, was independently association with global cognitive function and attention. A strategy to reduce SVD burden will have the potential to prevent cognitive decline. A total of 648 patients with any evidence of cerebral small vessel disease (SVD) in MRI and at least one vascular risk factor underwent Mini-mental State Examination (MMSE) and Japanese version of the Montreal Cognitive Assessment (MoCA-J) global cognitive tests. The total SVD scores count the presence of each SVD-related findings (white matter hyperintensity, Lacunar infarction, cerebral microbleeds and enlarged perivascular space), ranging from 0 to 4, as the SVD burden. Total SVD scores were significantly associated with MoCA-J scores (r = -0.203, P < 0.001). After adjustment for age, sex, education, risk factors, and medial temporal atrophy, the association between the total SVD score and global cognitive scores remained significant.
Collapse
|
6
|
Lee LH, Wu SC, Ho CF, Liang WL, Liu YC, Chou CJ. White matter hyperintensities in cholinergic pathways may predict poorer responsiveness to acetylcholinesterase inhibitor treatment for Alzheimer's disease. PLoS One 2023; 18:e0283790. [PMID: 37000849 PMCID: PMC10065432 DOI: 10.1371/journal.pone.0283790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Acetylcholinesterase inhibitor (AChEI) drug regimens are the mainstay treatment options for patients with Alzheimer's disease (AD). Herein, We examined the association between clinical response to AChEI and white matter hyperintensities on magnetic resonance imaging (MRI) scan at baseline. METHODS Between 2020 and 2021, we recruited 101 individuals with a clinical diagnosis of probable AD. Each participant underwent complete neuropsychological testing and 3T (Telsa) brain magnetic resonance imaging. Responsiveness to AChEI, as assessed after 12 months, was designated as less than two points of regression in Mini-Mental State Examination scores (MMSE) and stable clinical dementia rating scale. We also evaluated MRI images by examining scores on the Cholinergic Pathways Hyperintensities Scale (CHIPS), Fazekas scale, and medial temporal atrophy (MTA) scale. RESULTS In our cohort, 52 patients (51.4%) were classified as responders. We observed significantly higher CHIPS scores in the nonresponder group (21.1 ± 12.9 vs. 14.9 ± 9.2, P = 0.007). Age at baseline, education level, sex, Clinical Dementia Rating sum of boxes scores, and three neuroimaging parameters were tested in regression models. Only CHIPS scores predicted clinical response to AChEI treatment. CONCLUSION WMHs in the cholinergic pathways, not diffuse white matter lesions or hippocampal atrophy, correlated with poorer responsiveness to AChEI treatment. Therefore, further investigation into the role of the cholinergic pathway in AD is warranted.
Collapse
Affiliation(s)
- Li-Hua Lee
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Shu-Ching Wu
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Cheng-Feng Ho
- Department of Radiology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Wan-Lin Liang
- Department of Medical Research, Far Eastern Hospital, New Taipei City, Taipei, Taiwan
| | - Yi-Chien Liu
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
- Department of Education and Research, Medical school of Fu-Jen University, New Taipei City, Taipei, Taiwan
- Geriatric Behavioral Neurology Project, Tohoku University New Industry Hatchery Center (NICHe), Sendai, Japan
- * E-mail:
| | - Chia-Ju Chou
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| |
Collapse
|
7
|
Meng F, Yang Y, Jin G. Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment. Front Neurol 2022; 13:865920. [PMID: 35873763 PMCID: PMC9301233 DOI: 10.3389/fneur.2022.865920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
White matter hyperintensity of presumed vascular origin (WMH) is a common medical imaging manifestation in the brains of middle-aged and elderly individuals. WMH can lead to cognitive decline and an increased risk of cognitive impairment and dementia. However, the pathogenesis of cognitive impairment in patients with WMH remains unclear. WMH increases the risk of cognitive impairment, the nature and severity of which depend on lesion volume and location and the patient's cognitive reserve. Abnormal changes in microstructure, cerebral blood flow, metabolites, and resting brain function are observed in patients with WMH with cognitive impairment. Magnetic resonance imaging (MRI) is an indispensable tool for detecting WMH, and novel MRI techniques have emerged as the key approaches for exploring WMH and cognitive impairment. This article provides an overview of the association between WMH and cognitive impairment and the application of dynamic contrast-enhanced MRI, structural MRI, diffusion tensor imaging, 3D-arterial spin labeling, intravoxel incoherent motion, magnetic resonance spectroscopy, and resting-state functional MRI for examining WMH and cognitive impairment.
Collapse
Affiliation(s)
- Fanhua Meng
- North China University of Science and Technology, Tangshan, China
| | - Ying Yang
- Department of Radiology, China Emergency General Hospital, Beijing, China
| | - Guangwei Jin
- Department of Radiology, China Emergency General Hospital, Beijing, China
- *Correspondence: Guangwei Jin
| |
Collapse
|