1
|
Zhang X, Yin J, Sun X, Qu Z, Zhang J, Zhang H. The association between insomnia and cognitive decline: A scoping review. Sleep Med 2024; 124:540-550. [PMID: 39447528 DOI: 10.1016/j.sleep.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE This study aimed to investigate the association between insomnia and cognitive decline to provide insights for clinical interventions and future research. METHODS The PubMed, Embase, Web of Science, Scopus, Cochrane Library, and ProQuest databases were systematically searched to identify studies on the association between insomnia and cognitive decline published within the last decade. The quality of the included studies was evaluated, followed by data extraction and summary analysis. RESULTS A total of 36 studies were included in the review. Both subjective and objective measures were utilized across 12 indices to assess sleep status, while cognitive function was evaluated using 5 scales and 34 tests. The results revealed a significantly increased risk of cognitive decline or Alzheimer's disease among patients with insomnia, alongside notable impairments in attention, memory, visuospatial abilities, executive function, and verbal memory. Comprehensive assessments of cognitive domains were more sensitive in detecting group differences compared to assessments of specific cognitive sub-functions. Furthermore, MRI analyses showed reduced gray matter volumes in regions such as the prefrontal cortex, cingulate gyrus, temporal lobe, and hippocampus, together with reduced integrity of the white matter in patients with insomnia. CONCLUSIONS The findings indicate a potentially bidirectional relationship between insomnia and cognitive decline, suggesting that each may influence and exacerbate the other. Insomnia may increase the risk of cognitive decline and appears to be associated with reduced gray matter volume and compromised white matter integrity in the brain, which could potentially lead to declines in attention, memory, visuospatial abilities, executive function, and verbal memory. Conversely, cognitive decline may contribute to the onset of insomnia, further deteriorating sleep quality. However, further research is necessary to fully comprehend this intricate relationship.
Collapse
Affiliation(s)
- Xiaotu Zhang
- School of Nursing, Changchun University of Chinese Medicine, Changchun, China
| | - Jiawei Yin
- School of Nursing, Changchun University of Chinese Medicine, Changchun, China
| | - Xuefeng Sun
- School of Nursing, Changchun University of Chinese Medicine, Changchun, China
| | - Zihan Qu
- School of Nursing, Changchun University of Chinese Medicine, Changchun, China
| | - Jindan Zhang
- School of Nursing, Changchun University of Chinese Medicine, Changchun, China
| | - Hongshi Zhang
- School of Nursing, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
2
|
Zhang XH, Tan CC, Zheng YW, Ma X, Gong JN, Tan L, Xu W. Interactions between mild depressive symptoms and amyloid pathology on the trajectory of neurodegeneration, cognitive decline, and risk of Alzheimer's disease. J Affect Disord 2024; 368:73-81. [PMID: 39265872 DOI: 10.1016/j.jad.2024.08.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) was driven by the interplay between modifiable environmental factors and β-amyloid (Aβ) pathology. We aimed to investigate the interaction effects of mild depressive symptoms (MDS) with Aβ on AD development. METHODS Longitudinal data of 1746 non-demented adults (mean age = 73 years, female = 53 %, maximum = 10 years) were derived from the Alzheimer's Disease Neuroimaging Initiative cohort. MDS was separately defined by the baseline status, longitudinal latent class, and average intensity during follow-up. Amyloid-positive (A+) status was determined based on cerebrospinal fluid levels of β-amyloid. Regression models were employed to analyze the interactive effects of MDS with A+ on cognitive decline, neurodegeneration, and AD incidence. RESULTS Individuals with both A+ status and MDS at baseline experienced the fastest neurodegeneration (p < 0.01), cognitive decline (p < 0.05), and a higher risk of developing AD (HR = 5.23, p < 0.001). Furthermore, A+ participants with the trajectory of increasing depressive symptoms demonstrated more pronounced neurodegeneration (p < 0.001), cognitive decline (p < 0.01), and elevated risk of AD (HR = 10.45, p < 0.001). Finally, A+ status in combination with a higher average intensity of depressive symptoms was associated with faster brain atrophy (p < 0.01) and brain metabolism decline (p < 0.05), cognitive decline (p < 0.05), and higher AD risk (HR = 13.99, p < 0.001). CONCLUSION These findings emphasized that the MDS-Aβ interaction relationship should be considered in risk stratification, prediction, and early management of neurodegeneration and cognitive decline in the pre-dementia stage.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Wen Zheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jun-Nan Gong
- Department of Psychiatry, Dalian Jinzhou District Fourth People's Hospital, Dalian, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Ourry V, Binette AP, St-Onge F, Strikwerda-Brown C, Chagnot A, Poirier J, Breitner J, Arenaza-Urquijo EM, Rabin JS, Buckley R, Gonneaud J, Marchant NL, Villeneuve S. How Do Modifiable Risk Factors Affect Alzheimer's Disease Pathology or Mitigate Its Effect on Clinical Symptom Expression? Biol Psychiatry 2024; 95:1006-1019. [PMID: 37689129 DOI: 10.1016/j.biopsych.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.
Collapse
Affiliation(s)
- Valentin Ourry
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Clinical Memory Research Unit, Department of Clinical Sciences, Lunds Universitet, Malmö, Sweden
| | - Frédéric St-Onge
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cherie Strikwerda-Brown
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Audrey Chagnot
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Eider M Arenaza-Urquijo
- Environment and Health over the Lifecourse Programme, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Buckley
- Melbourne School of Psychological Sciences University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie Gonneaud
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Veitch DP, Weiner MW, Miller M, Aisen PS, Ashford MA, Beckett LA, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Nho KT, Nosheny R, Okonkwo O, Perrin RJ, Petersen RC, Rivera Mindt M, Saykin A, Shaw LM, Toga AW, Tosun D. The Alzheimer's Disease Neuroimaging Initiative in the era of Alzheimer's disease treatment: A review of ADNI studies from 2021 to 2022. Alzheimers Dement 2024; 20:652-694. [PMID: 37698424 PMCID: PMC10841343 DOI: 10.1002/alz.13449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to improve Alzheimer's disease (AD) clinical trials. Since 2006, ADNI has shared clinical, neuroimaging, and cognitive data, and biofluid samples. We used conventional search methods to identify 1459 publications from 2021 to 2022 using ADNI data/samples and reviewed 291 impactful studies. This review details how ADNI studies improved disease progression understanding and clinical trial efficiency. Advances in subject selection, detection of treatment effects, harmonization, and modeling improved clinical trials and plasma biomarkers like phosphorylated tau showed promise for clinical use. Biomarkers of amyloid beta, tau, neurodegeneration, inflammation, and others were prognostic with individualized prediction algorithms available online. Studies supported the amyloid cascade, emphasized the importance of neuroinflammation, and detailed widespread heterogeneity in disease, linked to genetic and vascular risk, co-pathologies, sex, and resilience. Biological subtypes were consistently observed. Generalizability of ADNI results is limited by lack of cohort diversity, an issue ADNI-4 aims to address by enrolling a diverse cohort.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Melanie Miller
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Miriam A. Ashford
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Laurel A. Beckett
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Robert C. Green
- Division of GeneticsDepartment of MedicineBrigham and Women's HospitalBroad Institute Ariadne Labs and Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Kwangsik T. Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachel Nosheny
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Monica Rivera Mindt
- Department of PsychologyLatin American and Latino Studies InstituteAfrican and African American StudiesFordham UniversityNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine and the PENN Alzheimer's Disease Research CenterCenter for Neurodegenerative ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuro ImagingInstitute of Neuroimaging and InformaticsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | |
Collapse
|
5
|
Thwarting Alzheimer's Disease through Healthy Lifestyle Habits: Hope for the Future. Neurol Int 2023; 15:162-187. [PMID: 36810468 PMCID: PMC9944470 DOI: 10.3390/neurolint15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that slowly disintegrates memory and thinking skills. Age is known to be the major risk factor in AD, but there are several nonmodifiable and modifiable causes. The nonmodifiable risk factors such as family history, high cholesterol, head injuries, gender, pollution, and genetic aberrations are reported to expediate disease progression. The modifiable risk factors of AD that may help prevent or delay the onset of AD in liable people, which this review focuses on, includes lifestyle, diet, substance use, lack of physical and mental activity, social life, sleep, among other causes. We also discuss how mitigating underlying conditions such as hearing loss and cardiovascular complications could be beneficial in preventing cognitive decline. As the current medications can only treat the manifestations of AD and not the underlying process, healthy lifestyle choices associated with modifiable factors is the best alternative strategy to combat the disease.
Collapse
|
6
|
Dzierzewski JM, Perez E, Ravyts SG, Dautovich N. Sleep and Cognition: A Narrative Review Focused on Older Adults. Sleep Med Clin 2022; 17:205-222. [PMID: 35659074 PMCID: PMC9177059 DOI: 10.1016/j.jsmc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Little is known regarding sleep's association with the traditional developmental course of late-life cognitive functioning. As the number of older adults increases worldwide, an enhanced understanding of age-related changes in sleep and cognition is necessary to slow decline and promote optimal aging. This review synthesizes the extant literature on sleep and cognitive function in healthy older adults, older adults with insomnia, and older adults with sleep apnea, incorporating information on the potential promising effects of treating poor sleep on cognitive outcomes in older adults. Unifying theories of the sleep-cognition association, possible mechanisms of action, and important unanswered questions are identified.
Collapse
Affiliation(s)
- Joseph M Dzierzewski
- Department of Psychology, Virginia Commonwealth University, 806 West Franklin Street, Room 306, Box 842018, Richmond, VA 23284-2018, USA.
| | - Elliottnell Perez
- Department of Psychology, Virginia Commonwealth University, Box 842018, Richmond, VA 23284-2018, USA
| | - Scott G Ravyts
- Department of Psychology, Virginia Commonwealth University, Box 842018, Richmond, VA 23284-2018, USA
| | - Natalie Dautovich
- Department of Psychology, Virginia Commonwealth University, 800 West Franklin Street, Room 203, Box 842018, Richmond, VA 23284-2018, USA
| |
Collapse
|