1
|
Li L, Han B, Kong Y, Zhang G, Zhang Z. Vitamin D binding protein in psychiatric and neurological disorders: Implications for diagnosis and treatment. Genes Dis 2024; 11:101309. [PMID: 38983447 PMCID: PMC11231549 DOI: 10.1016/j.gendis.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 07/11/2024] Open
Abstract
Vitamin D binding protein (VDBP) serves as a key transporter protein responsible for binding and delivering vitamin D and its metabolites to target organs. VDBP plays a crucial part in the inflammatory reaction following tissue damage and is engaged in actin degradation. Recent research has shed light on its potential role in various diseases, leading to a growing interest in understanding the implications of VDBP in psychiatric and neurological disorders. The purpose of this review was to provide a summary of the existing understanding regarding the involvement of VDBP in neurological and psychiatric disorders. By examining the intricate interplay between VDBP and these disorders, this review contributes to a deeper understanding of underlying mechanisms and potential therapeutic avenues. Insights gained from the study of VDBP could pave the way for novel strategies in the diagnosis, prognosis, and treatment of psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Ling Li
- Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Zhongda Hospital, Nanjing, Jiangsu 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Gaojia Zhang
- Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Zhongda Hospital, Nanjing, Jiangsu 210009, China
- Brain Cognition and Brain Disease Institute, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Khaire AS, Wimberly CE, Semmes EC, Hurst JH, Walsh KM. An integrated genome and phenome-wide association study approach to understanding Alzheimer's disease predisposition. Neurobiol Aging 2022; 118:117-123. [PMID: 35715361 PMCID: PMC9787699 DOI: 10.1016/j.neurobiolaging.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies (GWAS) have identified common single nucleotide polymorphisms (SNPs) that increase late-onset Alzheimer's disease (LOAD) risk. To identify additional LOAD-associated variants and provide insight into underlying disease biology, we performed a phenome-wide association study on 23 known LOAD-associated SNPs and 4:1 matched control SNPs using UK Biobank data. LOAD-associated SNPs were significantly enriched for associations with 8/778 queried traits, including 3 platelet traits. The strongest enrichment was for platelet distribution width (PDW) (p = 1.2 × 10-5), but increased PDW was not associated with LOAD susceptibility in Mendelian randomization analysis. Of 384 PDW-associated SNPs identified by prior GWAS, 36 were nominally associated with LOAD risk (17,008 cases; 37,154 controls) and 5 survived false-discovery rate correction. Associations confirmed known LOAD risk loci near PICALM, CD2AP, SPI1, and NDUFAF6, and identified a novel risk locus in epidermal growth factor receptor. Integrating GWAS and phenome-wide association study data reveals substantial pleiotropy between genetic determinants of LOAD and of platelet morphology, and for the first time implicates epidermal growth factor receptor - a mediator of β-amyloid toxicity - in Alzheimer's disease susceptibility.
Collapse
Affiliation(s)
- Archita S Khaire
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Courtney E Wimberly
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Eleanor C Semmes
- Medical Scientist Training Program, Duke University, Durham, NC, USA; Children's Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Jillian H Hurst
- Children's Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kyle M Walsh
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, USA; Children's Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Dow CT, Kidess L. BCG Vaccine-The Road Not Taken. Microorganisms 2022; 10:1919. [PMID: 36296196 PMCID: PMC9609351 DOI: 10.3390/microorganisms10101919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine has been used for over one hundred years to protect against the most lethal infectious agent in human history, tuberculosis. Over four billion BCG doses have been given and, worldwide, most newborns receive BCG. A few countries, including the United States, did not adopt the WHO recommendation for routine use of BCG. Moreover, within the past several decades, most of Western Europe and Australia, having originally employed routine BCG, have discontinued its use. This review article articulates the impacts of those decisions. The suggested consequences include increased tuberculosis, increased infections caused by non-tuberculous mycobacteria (NTM), increased autoimmune disease (autoimmune diabetes and multiple sclerosis) and increased neurodegenerative disease (Parkinson's disease and Alzheimer's disease). This review also offers an emerged zoonotic pathogen, Mycobacteriumavium ss. paratuberculosis (MAP), as a mostly unrecognized NTM that may have a causal role in some, if not all, of these diseases. Current clinical trials with BCG for varied infectious, autoimmune and neurodegenerative diseases have brought this century-old vaccine to the fore due to its presumed immuno-modulating capacity. With its historic success and strong safety profile, the new and novel applications for BCG may lead to its universal use-putting the Western World back onto the road not taken.
Collapse
Affiliation(s)
- Coad Thomas Dow
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, Madison, WI 53705, USA
- Mindful Diagnostics and Therapeutics, Eau Claire, WI 54701, USA
| | - Laith Kidess
- Department of Biochemistry, University of St. Thomas, St. Paul, MN 55105, USA
| |
Collapse
|
4
|
Liu H, Hu Y, Zhang Y, Zhang H, Gao S, Wang L, Wang T, Han Z, Sun BL, Liu G. Mendelian randomization highlights significant difference and genetic heterogeneity in clinically diagnosed Alzheimer's disease GWAS and self-report proxy phenotype GWAX. Alzheimers Res Ther 2022; 14:17. [PMID: 35090530 PMCID: PMC8800228 DOI: 10.1186/s13195-022-00963-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Until now, Mendelian randomization (MR) studies have investigated the causal association of risk factors with Alzheimer's disease (AD) using large-scale AD genome-wide association studies (GWAS), GWAS by proxy (GWAX), and meta-analyses of GWAS and GWAX (GWAS+GWAX) datasets. However, it currently remains unclear about the consistency of MR estimates across these GWAS, GWAX, and GWAS+GWAX datasets. METHODS Here, we first selected 162 independent educational attainment genetic variants as the potential instrumental variables (N = 405,072). We then selected one AD GWAS dataset (N = 63,926), two AD GWAX datasets (N = 314,278 and 408,942), and three GWAS+GWAX datasets (N = 388,324, 455,258, and 472,868). Finally, we conducted a MR analysis to evaluate the impact of educational attainment on AD risk across these datasets. Meanwhile, we tested the genetic heterogeneity of educational attainment genetic variants across these datasets. RESULTS In AD GWAS dataset, MR analysis showed that each SD increase in years of schooling (about 3.6 years) was significantly associated with 29% reduced AD risk (OR=0.71, 95% CI: 0.60-0.84, and P=1.02E-04). In AD GWAX dataset, MR analysis highlighted that each SD increase in years of schooling significantly increased 84% AD risk (OR=1.84, 95% CI: 1.59-2.13, and P=4.66E-16). Meanwhile, MR analysis suggested the ambiguous findings in AD GWAS+GWAX datasets. Heterogeneity test indicated evidence of genetic heterogeneity in AD GWAS and GWAX datasets. CONCLUSIONS We highlighted significant difference and genetic heterogeneity in clinically diagnosed AD GWAS and self-report proxy phenotype GWAX. Our MR findings are consistent with recent findings in AD genetic variants. Hence, the GWAX and GWAS+GWAX findings and MR findings from GWAX and GWAS+GWAX should be carefully interpreted and warrant further investigation using the AD GWAS dataset.
Collapse
Affiliation(s)
- Haijie Liu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Yang Hu
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080 China
| | - Yan Zhang
- grid.268079.20000 0004 1790 6079Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, 261053 China
| | - Haihua Zhang
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Shan Gao
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Longcai Wang
- grid.268079.20000 0004 1790 6079Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, 261053 China
| | - Tao Wang
- grid.510934.a0000 0005 0398 4153Chinese Institute for Brain Research, Beijing, China
| | - Zhifa Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Bao-liang Sun
- grid.415440.0Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China. .,Chinese Institute for Brain Research, Beijing, China. .,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China. .,Beijing Key Laboratory of Hypoxia Translational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
5
|
Cossu D, Ruberto S, Yokoyama K, Hattori N, Sechi LA. Efficacy of BCG vaccine in animal models of neurological disorders. Vaccine 2021; 40:432-436. [PMID: 34906393 DOI: 10.1016/j.vaccine.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
The Bacillus Calmette-Guerin (BCG) vaccine can modulate the immune response via antigen-specific immune response, but also it can confer nonspecific protection and therapeutic benefits in several neurological conditions through different heterologous effects of vaccination. However, the precise mechanism of action of BCG remains unclear. In this review, different mechanisms underlying BCG-mediated immunity will be explained in animal models that reflects characteristic feature of neuroinflammatory and neurodegenerative disorders such as multiple sclerosis, Alzheimer's and Parkinson's diseases. Furthermore, evidence for a beneficial effect of the BCG on neuropsychiatric disorders, will be also discussed.
Collapse
Affiliation(s)
- Davide Cossu
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy; Juntendo University, Department of Neurology, Tokyo 113-8431, Japan.
| | - Stefano Ruberto
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy
| | | | - Nobutaka Hattori
- Juntendo University, Department of Neurology, Tokyo 113-8431, Japan
| | - Leonardo A Sechi
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy; SC Microbiologia AOU Sassari, Sassari, Italy.
| |
Collapse
|