1
|
Lin J, Xiao Y, Yao C, Sun L, Wang P, Deng Y, Pu J, Xue SW. Linking inter-subject variability of cerebellar functional connectome to clinical symptoms in major depressive disorder. J Psychiatr Res 2024; 171:9-16. [PMID: 38219285 DOI: 10.1016/j.jpsychires.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder with remarkable inter-subject variability in clinical manifestations. Neuroimaging changes of the cerebellum have been recently proposed as a way to characterize MDD-related brain disruptions and might further explain various clinical symptoms. However, the cerebellar contributions to MDD clinical heterogeneity remain largely unknown. The analyzed data consisted of 251 MDD patients and 235 matching healthy controls (HC). The inter-subject variability of functional connectomes (IVFC) was estimated via Pearson's correlation analysis between each pair of the cerebellar and cerebral regions based on resting-state functional magnetic resonance imaging (rs-fMRI). A partial least squares (PLS) regression analysis was performed to determine the potential dimension linking the IVFC to clinical symptom measures. The results indicated that similar spatial distribution patterns of the cerebellar IVFC were observed between MDD and HC, but the MDD group exhibited abnormal IVFC alterations in the bilateral Cerebelum_4_5, bilateral Cerebelum_6, Vermis_1_2 and Vermis_8. The PLS model revealed that the IVFC pattern in the left Cerebelum_6 was significantly associated with three HAMD-17 items including the work and activities, psychomotor retardation, and depressed mood. These findings provided new evidence for the cerebellar changes in MDD. Specifically, we found that the altered inter-subject variability measurements correlated with clinical manifestations of this illness. Elucidating this variability could prove helpful for the evaluation of MDD heterogeneity as well as for understanding its pathophysiological mechanism.
Collapse
Affiliation(s)
- Jia Lin
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yang Xiao
- Peking University Sixth Hospital, Peking University, Beijing, PR China
| | - Chi Yao
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Li Sun
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Peng Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yanxin Deng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Jiayong Pu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Qin T, Wang L, Xu H, Liu C, Shao Y, Li F, Wang Y, Jiang J, Lin H. rTMS concurrent with cognitive training rewires AD brain by enhancing GM-WM functional connectivity: a preliminary study. Cereb Cortex 2024; 34:bhad460. [PMID: 38037857 DOI: 10.1093/cercor/bhad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and cognitive training for patients with Alzheimer's disease (AD) can change functional connectivity (FC) within gray matter (GM). However, the role of white matter (WM) and changes of GM-WM FC under these therapies are still unclear. To clarify this problem, we applied 40 Hz rTMS over angular gyrus (AG) concurrent with cognitive training to 15 mild-moderate AD patients and analyzed the resting-state functional magnetic resonance imaging before and after treatment. Through AG-based FC analysis, corona radiata and superior longitudinal fasciculus (SLF) were identified as activated WM tracts. Compared with the GM results with AG as seed, more GM regions were found with activated WM tracts as seeds. The averaged FC, fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) of the above GM regions had stronger clinical correlations (r/P = 0.363/0.048 vs 0.299/0.108, 0.351/0.057 vs 0.267/0.153, 0.420/0.021 vs 0.408/0.025, for FC/fALFF/ReHo, respectively) and better classification performance to distinguish pre-/post-treatment groups (AUC = 0.91 vs 0.88, 0.65 vs 0.63, 0.87 vs 0.82, for FC/fALFF/ReHo, respectively). Our results indicated that rTMS concurrent with cognitive training could rewire brain network by enhancing GM-WM FC in AD, and corona radiata and SLF played an important role in this process.
Collapse
Affiliation(s)
- Tong Qin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Luyao Wang
- School of Life Science, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Huanyu Xu
- School of Communication and Information Engineering, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yuxuan Shao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Jiehui Jiang
- School of Life Science, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
3
|
Warren A. The relationship between perceived stigma and perceived stress in cognitive decline: a survey of persons with mild cognitive impairment and their caregivers. Front Psychol 2023; 14:1293284. [PMID: 38144994 PMCID: PMC10740212 DOI: 10.3389/fpsyg.2023.1293284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction While Alzheimer's disease and other causes of dementia have rapidly become a global health crisis with growing incidence that is unabated, the incidence of Mild Cognitive Impairment (MCI) far exceeds that of Alzheimer's disease. Persons with MCI demonstrate some level of cognitive impairment, but daily functions remain intact and there is no certainty that they will develop dementia. Yet, the possibility conjures a considerable amount of fear and anxiety, further fueled by a vast array of misconceptions and stigma. The pervasive nature of this stigma permeates society and culture at many levels. Persons with MCI who are at higher risk for development of dementia may be especially vulnerable to fear and stigma associated with the diagnosis. Based on this premise, the primary aim of this study was to examine the relationship between perceived stigma and perceived stress in persons with MCI and their care partners, including the relationship between income and the study variables. The secondary aim was to examine the effect of a combined cognitive rehabilitation and wellness program on these perceptions. Methods Thirty participants were recruited from Mayo Clinic's Health Action to Benefit Independence and Thinking (HABIT) program. MCI (n = 15) and care partner (n = 15) participants completed the Stigma Impact Scale (SIS) and the Perceived Stress Scale (PSS) before and after the HABIT program. Results Average SIS and PSS scores decreased in the MCI, care partner, and combined groups, both pre- and post-HABIT. Linear regression was used to assess the relationship between perceived stigma and stress, controlling for income. A significant relationship was found between perceived stigma and perceived stress both pre and post-HABIT. Discussion The results suggest a relationship exists between perceived stigma and perceived stress in persons with MCI and their care partners, and an educational program such as HABIT may strengthen this relationship by informing participants of potential challenges that occur in cognitive decline. Understanding these relationships may provide an opportunity to provide tools for this vulnerable population.
Collapse
Affiliation(s)
- Alison Warren
- The Department of Clinical Research and Leadership, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
4
|
Bao X, Li W, Liu Y, Li X, Yue L, Xiao S. Impairment of delayed recall as a predictor of amnestic mild cognitive impairment development in normal older adults: a 7-year of longitudinal cohort study in Shanghai. BMC Psychiatry 2023; 23:892. [PMID: 38031039 PMCID: PMC10685709 DOI: 10.1186/s12888-023-05309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Amnestic mild cognitive impairment (aMCI) is considered a prodromal phase of Alzheimer's disease (AD). However, little is known about the neuropsychological characteristic at pre-MCI stage. This study aimed to investigate which neuropsychological tests could significantly predict aMCI from a seven-year longitudinal cohort study. METHODS The present study included 123 individuals with baseline cognitive normal (NC) diagnosis and a 7-year follow-up visit. All the subjects were from the China Longitudinal Aging Study (CLAS) study. Participants were divided into two groups, non-converter and converter based on whether progression to aMCI at follow-up. All participants underwent standardized comprehensive neuropsychological tests, including the mini-mental state examination (MMSE), Montreal Cognitive Assessment (MoCA), auditory verbal learning test (AVLT), the digital span test, the verbal fluency test, the visual recognition test, the WAIS picture completion task, and WAIS block design. Logistic regression analysis was used to evaluate the predictive power of baseline cognitive performance for the transformation of amnestic mild cognitive impairment. Receiver operating characteristic (ROC) curve was used to test the most sensitive test for distinguishing different groups. RESULTS Between the non-converter group and converter group, there were significant differences in the baseline scores of AVLT-delayed recall (AVLT-DR) (8.70 ± 3.61 vs. 6.81 ± 2.96, p = 0.001) and WAIS block design (29.86 ± 7.07 vs. 26.53 ± 8.29, p = 0.041). After controlling for gender, age, and education level, converter group showed lower baseline AVLT-DR than non-converter group, while no significant difference was found in WAIS block design. Furthermore, converter group had lower AVLT-DR score after controlling for somatic disease. The area under the curve of regression equation model was 0.738 (95%CI:0.635-0.840), with a sensitivity 83.9%, specificity of 63.6%. CONCLUSIONS Our results proved the value of delayed recall of AVLT in predicting conversion to aMCI. Early and careful checking of the cognitive function among older people should be emphasized.
Collapse
Affiliation(s)
- Xiaoqian Bao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Huangpu District Mental Health Center, Shanghai, China
| | - Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Liu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Heller-Wight A, Phipps C, Sexton J, Ramirez M, Warren DE. Hippocampal Resting State Functional Connectivity Associated with Physical Activity in Periadolescent Children. Brain Sci 2023; 13:1558. [PMID: 38002518 PMCID: PMC10669534 DOI: 10.3390/brainsci13111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Periadolescence is a neurodevelopmental period characterized by structural and functional brain changes that are associated with cognitive maturation. The development of the functional connectivity of the hippocampus contributes to cognitive maturation, especially memory processes. Notably, hippocampal development is influenced by lifestyle factors, including physical activity. Physical activity has been associated with individual variability in hippocampal functional connectivity. However, this relationship has not been characterized in a developmental cohort. In this study, we aimed to fill this gap by investigating the relationship between physical activity and the functional connectivity of the hippocampus in a cohort of periadolescents aged 8-13 years (N = 117). The participants completed a physical activity questionnaire, reporting the number of days per week they performed 60 min of physical activity; then, they completed a resting-state functional MRI scan. We observed that greater physical activity was significantly associated with differences in hippocampal functional connectivity in frontal and temporal regions. Greater physical activity was associated with decreased connectivity between the hippocampus and the right superior frontal gyrus and increased connectivity between the hippocampus and the left superior temporal sulcus. Capturing changes in hippocampal functional connectivity during key developmental periods may elucidate how lifestyle factors including physical activity influence brain network connectivity trajectories, cognitive development, and future disease risk.
Collapse
Affiliation(s)
- Abi Heller-Wight
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.H.-W.)
| | - Connor Phipps
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.H.-W.)
| | - Jennifer Sexton
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.H.-W.)
- Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Meghan Ramirez
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.H.-W.)
| | - David E. Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.H.-W.)
| |
Collapse
|
6
|
Zhu J, Margulies D, Qiu A. White matter functional gradients and their formation in adolescence. Cereb Cortex 2023; 33:10770-10783. [PMID: 37727985 DOI: 10.1093/cercor/bhad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
It is well known that functional magnetic resonance imaging (fMRI) is a widely used tool for studying brain activity. Recent research has shown that fluctuations in fMRI data can reflect functionally meaningful patterns of brain activity within the white matter. We leveraged resting-state fMRI from an adolescent population to characterize large-scale white matter functional gradients and their formation during adolescence. The white matter showed gray-matter-like unimodal-to-transmodal and sensorimotor-to-visual gradients with specific cognitive associations and a unique superficial-to-deep gradient with nonspecific cognitive associations. We propose two mechanisms for their formation in adolescence. One is a "function-molded" mechanism that may mediate the maturation of the transmodal white matter via the transmodal gray matter. The other is a "structure-root" mechanism that may support the mutual mediation roles of the unimodal and transmodal white matter maturation during adolescence. Thus, the spatial layout of the white matter functional gradients is in concert with the gray matter functional organization. The formation of the white matter functional gradients may be driven by brain anatomical wiring and functional needs.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Daniel Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 45 Rue des Saint-Pères, 75006 Paris, France
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- NUS (Suzhou) Research Institute, National University of Singapore, No. 377 Linquan Street, Suzhou 215000, China
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr, Singapore 117456, Singapore
- Institute of Data Science, National University of Singapore, 3 Research Link, #04-06, Singapore 117602, Singapore
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Kowloon, Hong Kong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
7
|
Jiang Y, Yuan TS, Chen YC, Guo P, Lian TH, Liu YY, Liu W, Bai YT, Zhang Q, Zhang W, Zhang JG. Deep brain stimulation of the nucleus basalis of Meynert modulates hippocampal-frontoparietal networks in patients with advanced Alzheimer's disease. Transl Neurodegener 2022; 11:51. [PMID: 36471370 PMCID: PMC9721033 DOI: 10.1186/s40035-022-00327-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has shown potential for the treatment of mild-to-moderate Alzheimer's disease (AD). However, there is little evidence of whether NBM-DBS can improve cognitive functioning in patients with advanced AD. In addition, the mechanisms underlying the modulation of brain networks remain unclear. This study was aimed to assess the cognitive function and the resting-state connectivity following NBM-DBS in patients with advanced AD. METHODS Eight patients with advanced AD underwent bilateral NBM-DBS and were followed up for 12 months. Clinical outcomes were assessed by neuropsychological examinations using the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale. Resting-state functional magnetic resonance imaging and positron emission tomography data were also collected. RESULTS The cognitive functioning of AD patients did not change from baseline to the 12-month follow-up. Interestingly, the MMSE score indicated clinical efficacy at 1 month of follow-up. At this time point, the connectivity between the hippocampal network and frontoparietal network tended to increase in the DBS-on state compared to the DBS-off state. Additionally, the increased functional connectivity between the parahippocampal gyrus (PHG) and the parietal cortex was associated with cognitive improvement. Further dynamic functional network analysis showed that NBM-DBS increased the proportion of the PHG-related connections, which was related to improved cognitive performance. CONCLUSION The results indicated that NBM-DBS improves short-term cognitive performance in patients with advanced AD, which may be related to the modulation of multi-network connectivity patterns, and the hippocampus plays an important role within these networks. TRIAL REGISTRATION ChiCTR, ChiCTR1900022324. Registered 5 April 2019-Prospective registration. https://www.chictr.org.cn/showproj.aspx?proj=37712.
Collapse
Affiliation(s)
- Yin Jiang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Tian-Shuo Yuan
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Ying-Chuan Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Peng Guo
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Teng-Hong Lian
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yu-Ye Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Wei Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yu-Tong Bai
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Quan Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Wei Zhang
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Jian-Guo Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China ,grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China ,grid.413259.80000 0004 0632 3337Beijing Key Laboratory of Neurostimulation, Beijing, 100070 China
| |
Collapse
|