1
|
Guo W, Mao X, Han D, Wang H, Zhang W, Zhang G, Zhang N, Nie B, Li H, Song Y, Wu Y, Chang L. Sleep deprivation aggravated amyloid β oligomers-induced damage to the cerebellum of rats: Evidence from magnetic resonance imaging. AGING BRAIN 2023; 4:100091. [PMID: 37600754 PMCID: PMC10432242 DOI: 10.1016/j.nbas.2023.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
For quite a long time, researches on Alzheimer's disease (AD) primarily focused on the cortex and hippocampus, while the cerebellum has been ignored because of its abnormalities considered to appear in the late stage of AD. In recent years, increasing evidence suggest that the cerebellar pathological changes possibly occur in the preclinical phase of AD, which is also associated with sleep disorder. Sleep disturbance is a high risk factor of AD. However, the changes and roles of cerebellum has rarely been reported under conditions of AD accompanied with sleep disorders. In this study, using an amyloid-β oligomers (AβO)-induced rat model of AD subjected to sleep deprivation, combining with a 7.0 T animals structural magnetic resonance imaging (MRI), we assessed structural changes of cerebellum in MRI. Our results showed that sleep deprivation combined with AβO led to an increased FA value in the anterior lobe of cerebellum, decreased ADC value in the cerebellar lobes and cerebellar nuclei, and increased cerebellum volume. Besides that, sleep deprivation exacerbated the damage of AβO to the cerebellar structural network. This study demonstrated that sleep deprivation could aggravate the damage to cerebellum induced by AβO. The present findings provide supporting evidence for the involvement of cerebellum in the early pathology of AD and sleep loss. Our data would contribute to advancing the understanding of the mysterious role of cerebellum in AD and sleep disorders, as well as would be helpful for developing non-invasive MRI biomarkers for screening early AD patients with self-reported sleep disturbances.
Collapse
Affiliation(s)
- Wensheng Guo
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ding Han
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Wanning Zhang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Hassan HM, Elnagar MR, Abdelrazik E, Mahdi MR, Hamza E, Elattar EM, ElNashar EM, Alghamdi MA, Al-Qahtani Z, Al-Khater KM, Aldahhan RA, ELdesoqui M. Neuroprotective effect of naringin against cerebellar changes in Alzheimer's disease through modulation of autophagy, oxidative stress and tau expression: An experimental study. Front Neuroanat 2022; 16:1012422. [PMID: 36312298 PMCID: PMC9615142 DOI: 10.3389/fnana.2022.1012422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual cognitive decline. Strong antioxidants that inhibit free radicals, such as polyphenols, reduce the likelihood of developing oxidative stress-related degenerative diseases such as AD. Naringin, a flavonoid found in citrus fruit shown to be neuroprotective, reduce oxidative damage and minimize histopathological changes caused by ischemic reperfusion, enhance the long-term memory in AD animal models. This work aimed to comprehend the role of naringin in the defense of the cerebellum against aluminum chloride (AlCl3)-induced AD in rats by investigating the behavioral, neurochemical, immunohistochemical, and molecular mechanisms that underpin its possible neuroprotective effects. Twenty-four adult albino rats were divided into four groups (n = 6/group): (i) Control (C) received saline per oral (p.o.), (ii) Naringin(N)-received naringin (100 mg/kg/d) p.o, (iii) AlCl3-recived AlCl3 (100 mg/kg/d) p.o and (iv) AlCl3 + Naringin (AlCl3 + N) received both AlCl3 and naringin p.o for 21 days. Behavioral tests showed an increase in the time to reach the platform in Morris water maze, indicating memory impairment in the AlCl3-treated group, but co-administration of naringin showed significant improvement. The Rotarod test demonstrated a decrease in muscle coordination in the AlCl3-treated group, while it was improved in the AlCl3 + N group. Neurochemical analysis of the hippocampus and cerebellum revealed that AlCl3 significantly increased lipid peroxidation and oxidative stress and decreased levels of reduced glutathione. Administration of naringin ameliorated these neurochemical changes via its antioxidant properties. Cerebellar immunohistochemical expression for microtubule assembly (tau protein) and oxidative stress (iNOS) increased in A1C13-treated group. On the other hand, the expression of the autophagic marker (LC3) in the cerebellum showed a marked decline in AlCl3-treated group. Western blot analysis confirmed the cerebellar immunohistochemical findings. Collectively, these findings suggested that naringin could contribute to the combat of oxidative and autophagic stress in the cerebellum of AlCl3-induced AD.
Collapse
Affiliation(s)
- Hend M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Eman Abdelrazik
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R. Mahdi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Hamza
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Horus University, Damietta, Egypt
| | - Eman M. Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Mohamed ElNashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Banha, Egypt
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Zainah Al-Qahtani
- Neurology Section, Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rashid A. Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mamdouh ELdesoqui
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Calandrelli R, Panfili M, Onofrj V, Tran HE, Piludu F, Guglielmi V, Colosimo C, Pilato F. Brain atrophy pattern in patients with mild cognitive impairment: MRI study. Transl Neurosci 2022; 13:335-348. [PMID: 36250040 PMCID: PMC9518661 DOI: 10.1515/tnsci-2022-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
We evaluated the accuracy of the quantitative and semiquantitative analysis in detecting regional atrophy patterns and differentiating mild cognitive impairment patients who remain stable (aMCI-S) from patients who develop Alzheimer’s disease (aMCI-AD) at clinical follow-up. Baseline magnetic resonance imaging was used for quantitative and semiquantitative analysis using visual rating scales. Visual rating scores were related to gray matter thicknesses or volume measures of some structures belonging to the same brain regions. Receiver operating characteristic (ROC) analysis was performed to assess measures’ accuracy in differentiating aMCI-S from aMCI-AD. Comparing aMCI-S and aMCI-AD patients, significant differences were found for specific rating scales, for cortical thickness belonging to the middle temporal lobe (MTL), anterior temporal (AT), and fronto-insular (FI) regions, for gray matter volumes belonging to MTL and AT regions. ROC curve analysis showed that middle temporal atrophy, AT, and FI visual scales showed better diagnostic accuracy than quantitative measures also when thickness measures were combined with hippocampal volumes. Semiquantitative evaluation, performed by trained observers, is a fast and reliable tool in differentiating, at the early stage of disease, aMCI patients that remain stable from those patients that may progress to AD since visual rating scales may be informative both about early hippocampal volume loss and cortical thickness reduction.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Marco Panfili
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Valeria Onofrj
- Department of Medical Imaging, Cliniques Universitaires Saint-Luc , Brussels , Belgium
| | - Huong Elena Tran
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Francesca Piludu
- Department of Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute , Via Elio Chianesi 53 , 00144 Rome , Italy
| | - Valeria Guglielmi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Cesare Colosimo
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Fabio Pilato
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University , Rome 00128 , Italy
| |
Collapse
|
4
|
Wang Y, Li L, Zhao X, Sui S, Wang Q, Shi G, Xu H, Zhang X, He Y, Gu J. Intestinal Microflora Changes in Patients with Mild Alzheimer's Disease in a Chinese Cohort. J Alzheimers Dis 2022; 88:563-575. [PMID: 35662119 DOI: 10.3233/jad-220076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Understanding the relationship between Alzheimer's disease (AD) and intestinal flora is still a major scientific topic that continues to advance. OBJECTIVE To determine characterized changes in the intestinal microbe community of patients with mild AD. METHODS Comparison of the 16S ribosomal RNA (rRNA) high-throughput sequencing data was obtained from the Illumina MiSeq platform of fecal microorganisms of the patients and healthy controls (HC) which were selected from cohabiting caregivers of AD patients to exclude environmental and dietary factors. RESULTS We found that the abundance of several bacteria taxa in AD patients was different from that in HC at the genus level, such as Anaerostipes, Mitsuokella, Prevotella, Bosea, Fusobacterium, Anaerotruncus, Clostridium, and Coprobacillus. Interestingly, the abundance of Akkermansia, an emerging probiotic, increased significantly in the AD group compared with that in the HC group. Meanwhile, the quantity of traditional probiotic Bifidobacteria of the AD group also rose. CONCLUSION These alterations in fecal microbiome of the AD group indicate that patients with mild AD have unique gut microbial characteristics. These specific AD-associated intestinal microbes could serve as novel potential targets for early intervention of AD.
Collapse
Affiliation(s)
- Yilin Wang
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, China
| | - Xiaodong Zhao
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Shaomei Sui
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, China
| | - Qi Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, China
| | - Guizhi Shi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huilian Xu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiujun Zhang
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan He
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|