1
|
Zhang A, Pan C, Wu M, Lin Y, Chen J, Zhong N, Zhang R, Pu L, Han L, Pan H. Causal association between plasma metabolites and neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111067. [PMID: 38908505 DOI: 10.1016/j.pnpbp.2024.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Establishing causal relationships between metabolic biomarkers and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) is a challenge faced by observational studies. In this study, our aim was to investigate the causal associations between plasma metabolites and neurodegenerative diseases using Mendelian Randomization (MR) methods. METHODS We utilized genetic associations with 1400 plasma metabolic traits as exposures. We used large-scale genome-wide association study (GWAS) summary statistics for AD and PD as our discovery datasets. For validation, we performed repeated analyses using different GWAS datasets. The main statistical method employed was inverse variance-weighted (IVW). We also conducted enrichment pathway analysis for IVW-identified metabolites. RESULTS In the discovered dataset, there are a total of 69 metabolites (36 negatively, 33 positively) potentially associated with AD, and 47 metabolites (24 negatively, 23 positively) potentially associated with PD. Among these, 4 significant metabolites overlap with significant metabolites (PIVW < 0.05)in the validation dataset for AD, and 1 metabolite overlaps with significant metabolites in the validation dataset for PD. Three metabolites serve as common potential metabolic markers for both AD and PD, including Tryptophan betaine, Palmitoleoylcarnitine (C16:1), and X-23655 levels. Further pathway enrichment analysis suggests that the SLC-mediated transmembrane transport pathway, involving tryptophan betaine and carnitine metabolites, may represent potential intervention targets for treating AD and PD. CONCLUSION This study offers novel insights into the causal effects of plasma metabolites on degenerative diseases through the integration of genomics and metabolomics. The identification of metabolites and metabolic pathways linked to AD and PD enhances our comprehension of the underlying biological mechanisms and presents promising targets for future therapeutic interventions in AD and PD.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan City, Guangdong Province, China
| | - Congcong Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan City, Guangdong Province, China
| | - Meifen Wu
- Department of Endocrinology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan City, Guangdong Province, China
| | - Yue Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan City, Guangdong Province, China
| | - Jiashen Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan City, Guangdong Province, China
| | - Ni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan City, Guangdong Province, China
| | - Ruijie Zhang
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life Sciences and Health Industry Research Institute, Chinese Academy of Sciences, Ningbo, Zhejiang Province, China
| | - Liyuan Pu
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life Sciences and Health Industry Research Institute, Chinese Academy of Sciences, Ningbo, Zhejiang Province, China
| | - Liyuan Han
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life Sciences and Health Industry Research Institute, Chinese Academy of Sciences, Ningbo, Zhejiang Province, China.
| | - Haiyan Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan City, Guangdong Province, China.
| |
Collapse
|
2
|
Zhu H, Hei B, Zhou W, Tan J, Zeng Y, Li M, Liu Z. Association between Life's Essential 8 and cognitive function among older adults in the United States. Sci Rep 2024; 14:19773. [PMID: 39187530 PMCID: PMC11347626 DOI: 10.1038/s41598-024-70112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
The American Heart Association (AHA) recently redefined cardiovascular health (CVH) with the introduction of Life's Essential 8 (LE8), which encompasses eight areas (diet, physical activity, nicotine exposure, sleep duration body mass index, non-HDL cholesterol, blood glucose, and blood pressure). This study aimed to explore the relationships between both the aggregate and individual CVH metrics, as defined by Life's Essential 8, and cognitive function in older adults in the United States. This cross-sectional, population-based study analyzed data from the National Health and Nutrition Examination Survey conducted between 2011 and 2014, focusing on individuals aged 60 years and older. CVH was categorized as low (0-49), moderate (50-79), or high (80-100). Cognitive function was assessed through the CERAD tests, Animal Fluency test, and Digit Symbol Substitution test. Multivariable logistic models and restricted cubic spline models were employed to investigate these associations. This study included a total of 2279 older adults in the United States. Only 11% of adults achieved a high total CVH score, while 12% had a low score. After further adjustment for potential confounding factors, higher LE8 scores were significantly associated with higher scores on CERAD: delayed recall score (0.02[0.01, 0.03]; P < 0.001), CERAD: total score (3 recall trials) (0.04[0.02, 0.06]; P < 0.001), animal fluency: total score (0.09[0.05, 0.12]; P < 0.001), and digit symbol: score (0.29[0.18, 0.41]; P < 0.001), demonstrating a linear dose-response relationship. Similar patterns were also observed in the associations between health behavior and health factor scores with cognitive function tests. LE8 scores exhibited positive linear associations with cognitive function. Maintaining better levels of CVH may be associated with higher levels of cognitive function in older Americans, but further research is needed to confirm the causal and temporal relationships between LE8 and cognitive function.
Collapse
Affiliation(s)
- Huaxin Zhu
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Bo Hei
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Neurosurgery, Peking University People's Hospital, Peking University, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Wu Zhou
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jiacong Tan
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yanyang Zeng
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Zheng Liu
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Godaert L, Dramé M. Efficacy of Photobiomodulation Therapy in Older Adults: A Systematic Review. Biomedicines 2024; 12:1409. [PMID: 39061982 PMCID: PMC11274037 DOI: 10.3390/biomedicines12071409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The aim was to determine whether there is any available evidence on the efficacy of photobiomodulation therapy (PBMT) in older adults. METHODS A literature search was performed including all articles published up to February 2024. Studies reporting data on PBMT in older adults were included. This study was registered with PROSPERO. RESULTS In total, 406 studies were identified. After eliminating duplicates and irrelevant studies, 10 records were included in the final review. In all included studies, the protocols used to deliver PBMT were different in terms of type of device, wavelength, irradiation duration, and pulse frequency. In neurodegenerative diseases, two studies reported non-significant results, while two studies reported efficacy of PBMT. In wounds and ulcers, two out of three studies reported efficacy of PBMT. In macular degeneration, one study reported efficacy of PBMT. One study on hyposalivation reported efficacy of PBMT. CONCLUSION PBMT appears to be a promising complementary treatment. All studies reported good compliance and safety throughout the treatment. In the future, it will be essential to harmonize PBMT parameters. Further studies are warranted to define the best indications, the most effective protocols, and the right population to target for use in routine practice.
Collapse
Affiliation(s)
- Lidvine Godaert
- EpiCliV Research Unit, Faculty of Medicine, University of the West Indies, Fort-de-France 97261, Martinique;
- General Hospital of Valenciennes—Valenciennes Hospital, Department of Supportive Care in Oncology, 114 Avenue Desandrouin, F-59300 Valenciennes, France
| | - Moustapha Dramé
- EpiCliV Research Unit, Faculty of Medicine, University of the West Indies, Fort-de-France 97261, Martinique;
- Department of Clinical Research and Innovation—CS 90632, University Hospitals of Martinique—Pierre Zobda-Quitman Hospital, Fort-de-France 97261, Martinique
| |
Collapse
|
4
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Stone J, Mitrofanis J, Johnstone DM, Robinson SR. The Catastrophe of Intracerebral Hemorrhage Drives the Capillary-Hemorrhage Dementias, Including Alzheimer's Disease. J Alzheimers Dis 2024; 97:1069-1081. [PMID: 38217606 DOI: 10.3233/jad-231202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
This review advances an understanding of several dementias, based on four premises. One is that capillary hemorrhage is prominent in the pathogenesis of the dementias considered (dementia pugilistica, chronic traumatic encephalopathy, traumatic brain damage, Alzheimer's disease). The second premise is that hemorrhage introduces four neurotoxic factors into brain tissue: hypoxia of the tissue that has lost its blood supply, hemoglobin and its breakdown products, excitotoxic levels of glutamate, and opportunistic pathogens that can infect brain cells and induce a cytotoxic immune response. The third premise is that where organisms evolve molecules that are toxic to itself, like the neurotoxicity ascribed to hemoglobin, amyloid- (A), and glutamate, there must be some role for the molecule that gives the organism a selection advantage. The fourth is the known survival-advantage roles of hemoglobin (oxygen transport), of A (neurotrophic, synaptotrophic, detoxification of heme, protective against pathogens) and of glutamate (a major neurotransmitter). From these premises, we propose 1) that the brain has evolved a multi-factor response to intracerebral hemorrhage, which includes the expression of several protective molecules, including haptoglobin, hemopexin and A; and 2) that it is logical, given these premises, to posit that the four neurotoxic factors set out above, which are introduced into the brain by hemorrhage, drive the progression of the capillary-hemorrhage dementias. In this view, A expressed at the loci of neuronal death in these dementias functions not as a toxin but as a first responder, mitigating the toxicity of hemoglobin and the infection of the brain by opportunistic pathogens.
Collapse
Affiliation(s)
- Jonathan Stone
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de Dotation, Clinatec, Grenoble, France
- Institute of Ophthalmology, University College London, London, UK
| | - Daniel M Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| |
Collapse
|
6
|
Zhang Z, Zhu Z, Zuo X, Wang X, Ju C, Liang Z, Li K, Zhang J, Luo L, Ma Y, Song Z, Li X, Li P, Quan H, Huang P, Yao Z, Yang N, Zhou J, Kou Z, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation reduces neuropathic pain after spinal cord injury by downregulating CXCL10 expression. CNS Neurosci Ther 2023; 29:3995-4017. [PMID: 37475184 PMCID: PMC10651991 DOI: 10.1111/cns.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Many studies have recently highlighted the role of photobiomodulation (PBM) in neuropathic pain (NP) relief after spinal cord injury (SCI), suggesting that it may be an effective way to relieve NP after SCI. However, the underlying mechanisms remain unclear. This study aimed to determine the potential mechanisms of PBM in NP relief after SCI. METHODS We performed systematic observations and investigated the mechanism of PBM intervention in NP in rats after SCI. Using transcriptome sequencing, we screened CXCL10 as a possible target molecule for PBM intervention and validated the results in rat tissues using reverse transcription-polymerase chain reaction and western blotting. Using immunofluorescence co-labeling, astrocytes and microglia were identified as the cells responsible for CXCL10 expression. The involvement of the NF-κB pathway in CXCL10 expression was verified using inhibitor pyrrolidine dithiocarbamate (PDTC) and agonist phorbol-12-myristate-13-acetate (PMA), which were further validated by an in vivo injection experiment. RESULTS Here, we demonstrated that PBM therapy led to an improvement in NP relative behaviors post-SCI, inhibited the activation of microglia and astrocytes, and decreased the expression level of CXCL10 in glial cells, which was accompanied by mediation of the NF-κB signaling pathway. Photobiomodulation inhibit the activation of the NF-κB pathway and reduce downstream CXCL10 expression. The NF-κB pathway inhibitor PDTC had the same effect as PBM on improving pain in animals with SCI, and the NF-κB pathway promoter PMA could reverse the beneficial effect of PBM. CONCLUSIONS Our results provide new insights into the mechanisms by which PBM alleviates NP after SCI. We demonstrated that PBM significantly inhibited the activation of microglia and astrocytes and decreased the expression level of CXCL10. These effects appear to be related to the NF-κB signaling pathway. Taken together, our study provides evidence that PBM could be a potentially effective therapy for NP after SCI, CXCL10 and NF-kB signaling pathways might be critical factors in pain relief mediated by PBM after SCI.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Liang Luo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Peipei Huang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhou Yao
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Ning Yang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jie Zhou
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhenzhen Kou
- Department of Anatomy, Histology and Embryology, School of Basic MedicineAir Force Military Medical UniversityXi'anShaanxiChina
| | - Beiyu Chen
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
7
|
Stone J, Mitrofanis J, Johnstone DM, Robinson SR. Twelve protections evolved for the brain, and their roles in extending its functional life. Front Neuroanat 2023; 17:1280275. [PMID: 38020212 PMCID: PMC10657866 DOI: 10.3389/fnana.2023.1280275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
As human longevity has increased, we have come to understand the ability of the brain to function into advanced age, but also its vulnerability with age, apparent in the age-related dementias. Against that background of success and vulnerability, this essay reviews how the brain is protected by (by our count) 12 mechanisms, including: the cranium, a bony helmet; the hydraulic support given by the cerebrospinal fluid; the strategically located carotid body and sinus, which provide input to reflexes that protect the brain from blood-gas imbalance and extremes of blood pressure; the blood brain barrier, an essential sealing of cerebral vessels; the secretion of molecules such as haemopexin and (we argue) the peptide Aβ to detoxify haemoglobin, at sites of a bleed; autoregulation of the capillary bed, which stabilises metabolites in extracellular fluid; fuel storage in the brain, as glycogen; oxygen storage, in the haemoprotein neuroglobin; the generation of new neurones, in the adult, to replace cells lost; acquired resilience, the stress-induced strengthening of cell membranes and energy production found in all body tissues; and cognitive reserve, the ability of the brain to maintain function despite damage. Of these 12 protections, we identify 5 as unique to the brain, 3 as protections shared with all body tissues, and another 4 as protections shared with other tissues but specialised for the brain. These protections are a measure of the brain's vulnerability, of its need for protection. They have evolved, we argue, to maintain cognitive function, the ability of the brain to function despite damage that accumulates during life. Several can be tools in the hands of the individual, and of the medical health professional, for the lifelong care of our brains.
Collapse
Affiliation(s)
- Jonathan Stone
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - John Mitrofanis
- Grenoble and Institute of Ophthalmology, Fonds de Dotation Clinatec, Université Grenoble Alpes, University College London, London, United Kingdom
| | - Daniel M. Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Stephen R. Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
8
|
Hoh Kam J, Mitrofanis J. Glucose Improves the Efficacy of Photobiomodulation in Changing ATP and ROS Levels in Mouse Fibroblast Cell Cultures. Cells 2023; 12:2533. [PMID: 37947612 PMCID: PMC10648764 DOI: 10.3390/cells12212533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
In this study, we tested the idea that photobiomodulation-the application of red to near infrared light (~λ = 600-1300 nm) to body tissues-is more effective in influencing cell metabolism when glucose is readily available. To this end, we used a mouse fibroblast (L-929) cell culture model and had two sets of conditions: non-stressed (10% FBS (foetal bovine serum)) and stressed (1% FBS), both either with or without glucose. We treated (or not) cells with photobiomodulation using an 810 nm laser at 15 mW/cm2 (~7.2 J/cm2). Our results showed that photobiomodulation was neither cytotoxic nor effective in enhancing measures of cell viability and proliferation, together with protein levels in any of the cell cultures. Photobiomodulation was, however, effective in increasing adenosine triphosphate (ATP) and decreasing reactive oxygen species (ROS) levels and this was-most importantly-only in conditions where glucose was present; corresponding cultures that did not contain glucose did not show these changes. In summary, we found that the benefits of photobiomodulation, in particular in changing ATP and ROS levels, were induced only when there was glucose available. Our findings lay a template for further explorations into the mechanisms of photobiomodulation, together with having considerable experimental and clinical implications.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- Fonds de Dotation Clinatec, Grenoble Alpes University, 38000 Grenoble, France;
| | - John Mitrofanis
- Fonds de Dotation Clinatec, Grenoble Alpes University, 38000 Grenoble, France;
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
9
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
10
|
Carroll JD. Photobiomodulation Literature Watch October 2022. Photobiomodul Photomed Laser Surg 2023; 41:140-143. [PMID: 36927051 DOI: 10.1089/photob.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
11
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|