1
|
Adelson RP, Garikipati A, Maharjan J, Ciobanu M, Barnes G, Singh NP, Dinenno FA, Mao Q, Das R. Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer's Disease. Diagnostics (Basel) 2023; 14:13. [PMID: 38201322 PMCID: PMC10795823 DOI: 10.3390/diagnostics14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Mild cognitive impairment (MCI) is cognitive decline that can indicate future risk of Alzheimer's disease (AD). We developed and validated a machine learning algorithm (MLA), based on a gradient-boosted tree ensemble method, to analyze phenotypic data for individuals 55-88 years old (n = 493) diagnosed with MCI. Data were analyzed within multiple prediction windows and averaged to predict progression to AD within 24-48 months. The MLA outperformed the mini-mental state examination (MMSE) and three comparison models at all prediction windows on most metrics. Exceptions include sensitivity at 18 months (MLA and MMSE each achieved 0.600); and sensitivity at 30 and 42 months (MMSE marginally better). For all prediction windows, the MLA achieved AUROC ≥ 0.857 and NPV ≥ 0.800. With averaged data for the 24-48-month lookahead timeframe, the MLA outperformed MMSE on all metrics. This study demonstrates that machine learning may provide a more accurate risk assessment than the standard of care. This may facilitate care coordination, decrease healthcare expenditures, and maintain quality of life for patients at risk of progressing from MCI to AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqing Mao
- Montera, Inc. dba Forta, 548 Market St, PMB 89605, San Francisco, CA 94104-5401, USA; (R.P.A.); (A.G.); (J.M.); (M.C.); (G.B.); (N.P.S.); (F.A.D.); (R.D.)
| | | |
Collapse
|
2
|
Wagner DT, Tilmans L, Peng K, Niedermeier M, Rohl M, Ryan S, Yadav D, Takacs N, Garcia-Fraley K, Koso M, Dikici E, Prevedello LM, Nguyen XV. Artificial Intelligence in Neuroradiology: A Review of Current Topics and Competition Challenges. Diagnostics (Basel) 2023; 13:2670. [PMID: 37627929 PMCID: PMC10453240 DOI: 10.3390/diagnostics13162670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
There is an expanding body of literature that describes the application of deep learning and other machine learning and artificial intelligence methods with potential relevance to neuroradiology practice. In this article, we performed a literature review to identify recent developments on the topics of artificial intelligence in neuroradiology, with particular emphasis on large datasets and large-scale algorithm assessments, such as those used in imaging AI competition challenges. Numerous applications relevant to ischemic stroke, intracranial hemorrhage, brain tumors, demyelinating disease, and neurodegenerative/neurocognitive disorders were discussed. The potential applications of these methods to spinal fractures, scoliosis grading, head and neck oncology, and vascular imaging were also reviewed. The AI applications examined perform a variety of tasks, including localization, segmentation, longitudinal monitoring, diagnostic classification, and prognostication. While research on this topic is ongoing, several applications have been cleared for clinical use and have the potential to augment the accuracy or efficiency of neuroradiologists.
Collapse
Affiliation(s)
- Daniel T. Wagner
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (L.M.P.)
| | - Luke Tilmans
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (L.M.P.)
| | - Kevin Peng
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Matt Rohl
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sean Ryan
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (L.M.P.)
| | - Divya Yadav
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Noah Takacs
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Krystle Garcia-Fraley
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (L.M.P.)
| | - Mensur Koso
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Engin Dikici
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (L.M.P.)
| | - Luciano M. Prevedello
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (L.M.P.)
| | - Xuan V. Nguyen
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (L.M.P.)
| |
Collapse
|