1
|
Li XL, Wang RT, Tan CC, Tan L, Xu W. Systolic blood pressure variability in late-life predicts cognitive trajectory and risk of Alzheimer's disease. Front Aging Neurosci 2024; 16:1448034. [PMID: 39420926 PMCID: PMC11483855 DOI: 10.3389/fnagi.2024.1448034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Background The relationship of systolic blood pressure variability (SBPV) with Alzheimer's disease (AD) remains controversial. We aimed to explore the roles of SBPV in predicting AD incidence and to test the pathways that mediated the relationship of SBPV with cognitive functions. Methods Longitudinal data across 96 months (T0 to T4) were derived from the Alzheimer's disease Neuroimaging Initiative cohort. SBPV for each participant was calculated based on the four measurements of SBP across 24 months (T0 to T3). At T3, logistic regression models were used to test the SBPV difference between 86 new-onset AD and 743 controls. Linear regression models were used to test the associations of SBPV with cognition and AD imaging endophenotypes for 743 non-demented participants (median age = 77.0, female = 42%). Causal mediation analyses were conducted to explore the effects of imaging endophenotypes in mediating the relationships of SBPV with cognitive function. Finally, Cox proportional hazard model was utilized to explore the association of SBPV with incident risk of AD (T3 to T4, mean follow-up = 3.5 years). Results Participants with new-onset AD at T3 had significantly higher SBPV compared to their controls (p = 0.018). Higher SBPV was associated with lower scores of cognitive function (p = 0.005 for general cognition, p = 0.029 for memory, and p = 0.016 for executive function), higher cerebral burden of amyloid deposition by AV45 PET (p = 0.044), lower brain metabolism by FDG PET (p = 0.052), and higher burden of white matter hyperintensities (WMH) (p = 0.012). Amyloid pathology, brain metabolism, and WMH partially (ranging from 17.44% to 36.10%) mediated the associations of SBPV with cognition. Higher SBPV was significantly associated with elevated risk of developing AD (hazard ratio = 1.29, 95% confidence interval = 1.07 to 1.57, p = 0.008). Conclusion These findings supported that maintaining stable SBP in late life helped lower the risk of AD, partially by modulating amyloid pathology, cerebral metabolism, and cerebrovascular health.
Collapse
Affiliation(s)
- Xiao-Lu Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Medical College, Qingdao University, Qingdao, China
| | - Ruo-Tong Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Lohman T, Sible I, Engstrom AC, Kapoor A, Shenasa F, Head E, Sordo L, Alitin JPM, Gaubert A, Nguyen A, Rodgers KE, Bradford D, Nation DA. Beat-to-beat blood pressure variability, hippocampal atrophy, and memory impairment in older adults. GeroScience 2024:10.1007/s11357-024-01303-z. [PMID: 39098984 DOI: 10.1007/s11357-024-01303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Visit-to-visit blood pressure variability (BPV) predicts age-related hippocampal atrophy, neurodegeneration, and memory decline in older adults. Beat-to-beat BPV may represent a more reliable and efficient tool for prospective risk assessment, but it is unknown whether beat-to-beat BPV is similarly associated with hippocampal neurodegeneration, or with plasma markers of neuroaxonal/neuroglial injury. Independently living older adults without a history of dementia, stroke, or other major neurological disorders were recruited from the community (N = 104; age = 69.5 ± 6.7 (range 55-89); 63% female). Participants underwent continuous blood pressure monitoring, brain MRI, venipuncture, and cognitive testing over two visits. Hippocampal volumes, plasma neurofilament light, and glial fibrillary acidic protein levels were assessed. Beat-to-beat BPV was quantified as systolic blood pressure average real variability during 7-min of supine continuous blood pressure monitoring. The cross-sectional relationship between beat-to-beat BPV and hippocampal volumes, cognitive domain measures, and plasma biomarkers was assessed using multiple linear regression with adjustment for demographic covariates, vascular risk factors, and average systolic blood pressure. Elevated beat-to-beat BPV was associated with decreased left hippocampal volume (P = .008), increased plasma concentration of glial fibrillary acidic protein (P = .006), and decreased memory composite score (P = .02), independent of age, sex, average systolic blood pressure, total intracranial volume, and vascular risk factor burden. In summary, beat-to-beat BPV is independently associated with decreased left hippocampal volume, increased neuroglial injury, and worse memory ability. Findings are consistent with prior studies examining visit-to-visit BPV and suggest beat-to-beat BPV may be a useful marker of hemodynamic brain injury in older adults.
Collapse
Affiliation(s)
- Trevor Lohman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kathleen E Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - David Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Lohman T, Sible I, Kapoor A, Engstrom AC, Alitin JP, Gaubert A, Rodgers KE, Bradford D, Mather M, Han SD, Thayer JF, Nation DA. Blood pressure variability, central autonomic network dysfunction and cerebral small vessel disease in APOE4 carriers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.13.23299556. [PMID: 38168394 PMCID: PMC10760290 DOI: 10.1101/2023.12.13.23299556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Increased blood pressure variability (BPV) is a risk factor for cerebral small vessel disease (CSVD) and neurodegeneration, independent of age and average blood pressure, particularly in apolipoprotein E4 (APOE4) carriers. However, it remains uncertain whether BPV elevation is a cause or a consequence of vascular brain injury, or to what degree injury to the central autonomic network (CAN) may contribute to BPV-associated risk in APOE4 carriers. Methods Independently living older adults (n=70) with no history of stroke or dementia were recruited from the community and underwent 5 minutes of resting beat-to-beat blood pressure monitoring, genetic testing, and brain MRI. Resting BPV, APOE genotype, CSVD burden on brain MRI, and resting state CAN connectivity by fMRI were analyzed. Causal mediation and moderation analysis evaluated BPV and CAN effects on CSVD in APOE4 carriers (n=37) and non-carriers (n=33). Results Higher BPV was associated with the presence and extent of CSVD in APOE4 carriers, but not non-carriers, independent of CAN connectivity (B= 18.92, P= .02), and CAN connectivity did not mediate the relationship between BPV and CSVD. In APOE4 carriers, CAN connectivity moderated the relationship between BPV and CSVD, whereby BPV effects on CSVD were greater in those with lower CAN connectivity (B= 36.43, P= .02). Conclusions Older APOE4 carriers with higher beat-to-beat BPV exhibit more extensive CSVD, independent of average blood pressure, and the strength of CAN connectivity does not mediate these effects. Findings suggest increased BPV is more likely a cause, not a consequence, of CSVD. BPV is more strongly associated with CSVD in APOE4 carriers with lower rsCAN connectivity, suggesting CAN dysfunction and BPV elevation may have synergistic effects on CSVD. Further studies are warranted to understand the interplay between BPV and CAN function in APOE4 carriers.
Collapse
Affiliation(s)
- Trevor Lohman
- University of Southern California Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Isabel Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - John Paul Alitin
- University of Southern California Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Aimee Gaubert
- University of Southern California Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Kathleen E Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - David Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Mara Mather
- University of Southern California Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - S Duke Han
- University of Southern California Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Daniel A Nation
- University of Southern California Leonard Davis School of Gerontology, Los Angeles, CA, USA
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|