1
|
Talaei M, Waters S, Portas L, Jacobs BM, Dodd JW, Marshall CR, Minelli C, Shaheen SO. Lung development genes, adult lung function and cognitive traits. Brain Commun 2024; 6:fcae380. [PMID: 39544701 PMCID: PMC11562126 DOI: 10.1093/braincomms/fcae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Lower lung function is associated with lower cognitive function and an increased risk of dementia. This has not been adequately explained and may partly reflect shared developmental pathways. In UK Biobank participants of European ancestry, we tested the association between lung function measures (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio; n = 306 476) and cognitive traits including nine cognitive function test scores (n = 32 321-428 609), all-cause dementia, Alzheimer's disease and vascular dementia (6805, 2859 and 1544 cases, respectively, and ∼421 241 controls). In the same population, we derived summary statistics for associations between common genetic variants in 55 lung development genes and lung function measures and cognitive traits using adjusted linear/logistic regression models. Using a hypothesis-driven Bayesian co-localization analysis, we finally investigated the presence of shared genetic signals between lung function measures and cognitive traits at each of these 55 genes. Higher lung function measures were generally associated with higher scores of cognitive function tests as well as lower risk of dementia. The strongest association was between forced vital capacity and vascular dementia (adjusted hazard ratio 0.74 per standard deviation increase, 95% confidence interval 0.67-0.83). Of the 55 genes of interest, we found shared variants in four genes, namely: CSNK2B rs9267531 (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence and pairs matching), NFATC3 rs548092276 & rs11275011 (forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence), PTCH1 rs2297086 & rs539078574 (forced expiratory volume in 1 s to forced vital capacity ratio with reaction time) and KAT8 rs138259061 (forced vital capacity with pairs matching). However, the direction of effects was not in keeping with our hypothesis, i.e. variants associated with lower lung function were associated with better cognitive function or vice versa. We also found distinct variants associated with lung function and cognitive function in KAT8 (forced vital capacity and Alzheimer's disease) and PTCH1 (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence and reaction time). The links between CSNK2B and NFATC3 and cognitive traits have not been previously reported by genome-wide association studies. Despite shared genes and variants, our findings do not support the hypothesis that shared developmental signalling pathways explain the association of lower adult lung function with poorer cognitive function.
Collapse
Affiliation(s)
- Mohammad Talaei
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sheena Waters
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Portas
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - James W Dodd
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol BS8 2BN, UK
- Academic Respiratory Unit, Southmead Hospital, University of Bristol, Bristol BS10 5NB, UK
| | - Charles R Marshall
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Seif O Shaheen
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Grande G, Li Y, Trevisan C, Rizzuto D, Kalpouzos G, Ding M, Laukka EJ, Bellander T, Fratiglioni L, Qiu C. Lung function in relation to brain aging and cognitive transitions in older adults: A population-based cohort study. Alzheimers Dement 2024; 20:5662-5673. [PMID: 38970219 PMCID: PMC11350049 DOI: 10.1002/alz.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/27/2024] [Accepted: 05/29/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND We investigated the association of peak expiratory flow (PEF) with dementia; cognitive impairment, no dementia (CIND); and transition from CIND to dementia, and possible underlying neuropathological mechanisms. METHODS A population-based cohort of adults aged 60+ was followed over 15 years to detect dementia (Diagnostic and Statistical Manual of Mental Disorders, 4th edition criteria), CIND (assessed through a cognitive battery), and progression from CIND to dementia, in relation to baseline PEF observations. A subsample (n = 462) had 6-year follow-up data on brain magnetic resonance imaging markers of neurodegeneration and small vessel disease. RESULTS In fully adjusted models, poor PEF performance (< 10th vs. ≥ 80th percentile) was associated with increased hazards for dementia (hazard ratio [HR] = 1.89; 95% confidence interval [CI] = 1.23-2.92) and CIND (HR = 1.55; 95% CI = 1.01-2.38) and CIND progression to dementia, although not statistically significantly (HR = 2.44; 95% CI = 0.78-6.88). People with poor PEF also experienced the fastest ventricular enlargement (β coefficient = 0.67 mL/year; 95% CI = 0.13-1.21) and had the highest likelihood of developing lacunes (odds ratio = 5.05; 95% CI = 1.01-25.23). DISCUSSION Poor lung function contributes to cognitive deterioration possibly through accelerated brain atrophy and microvascular damage. HIGHLIGHTS Poor lung function increased the risk of dementia and mild cognitive impairment (MCI). Poor lung function accelerated the progression from MCI to dementia. Poor lung function was linked to brain microvascular damage and global brain atrophy.
Collapse
Affiliation(s)
- Giulia Grande
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
- Stockholm Gerontology Research CentreStockholmSweden
| | - Yuanjing Li
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
| | - Caterina Trevisan
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Debora Rizzuto
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
- Stockholm Gerontology Research CentreStockholmSweden
| | - Grégoria Kalpouzos
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
| | - Mozhu Ding
- Unit of EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Erika J Laukka
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
- Stockholm Gerontology Research CentreStockholmSweden
| | - Tom Bellander
- Unit of EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Laura Fratiglioni
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
- Stockholm Gerontology Research CentreStockholmSweden
| | - Chengxuan Qiu
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
| |
Collapse
|
3
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
4
|
Zhan ZQ, Huang ZM, Zhou HB, Xie ZX, Chen YZ, Luo YH, Chen PZ, Kang JQ, Cheng ZJ, Sun B. Gastroesophageal reflux disease with 6 neurodegenerative and psychiatric disorders: Genetic correlations, causality, and potential molecular mechanisms. J Psychiatr Res 2024; 172:244-253. [PMID: 38412787 DOI: 10.1016/j.jpsychires.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
The comorbidities between gastroesophageal reflux disease (GERD) and various neurodegenerative and psychiatric disorders have been widely reported. However, the genetic correlations, causal relationships, and underlying mechanisms linking GERD to these disorders remain largely unknown. Here, we conducted a bidirectional Mendelian randomization (MR) analysis to determine the causality between GERD and 6 neurodegenerative and psychiatric disorders. Sensitivity analyses and multivariable MR were performed to test the robustness of our findings. Linkage disequilibrium score regression was used to assess the genetic correlation between these diseases as affected by heredity. Multiple bioinformatics tools combining two machine learning algorithms were applied to further investigate the potential mechanisms underlying these diseases. We found that genetically predicted GERD significantly increased the risk of Alzheimer's disease, major depressive disorder, and anxiety disorders. There might be a bidirectional relationship between GERD and insomnia. GERD has varying degrees of genetic correlations with AD, ALS, anxiety disorders, insomnia, and depressive disorder. Bioinformatics analyses revealed the hub shared genes and the common pathways between GERD and 6 neurodegenerative and psychiatric disorders. Our findings demonstrated the complex nature of the genetic architecture across these diseases and clarified their causality, highlighting that treatments for the cure or remission of GERD may serve as potential strategies for preventing and managing neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Zhi-Qing Zhan
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Min Huang
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hao-Bin Zhou
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Xin Xie
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ying-Zhou Chen
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, China
| | - Yu-Hua Luo
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Pei-Zhen Chen
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia-Qi Kang
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Besser LM, Chrisphonte S, Kleiman MJ, O’Shea D, Rosenfeld A, Tolea M, Galvin JE. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. PLoS One 2023; 18:e0293634. [PMID: 37889891 PMCID: PMC10610524 DOI: 10.1371/journal.pone.0293634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The Health Brain Initiative (HBI), established by University of Miami's Comprehensive Center for Brain Health (CCBH), follows racially/ethnically diverse older adults without dementia living in South Florida. With dementia prevention and brain health promotion as an overarching goal, HBI will advance scientific knowledge by developing novel assessments and non-invasive biomarkers of Alzheimer's disease and related dementias (ADRD), examining additive effects of sociodemographic, lifestyle, neurological and biobehavioral measures, and employing innovative, methodologically advanced modeling methods to characterize ADRD risk and resilience factors and transition of brain aging. METHODS HBI is a longitudinal, observational cohort study that will follow 500 deeply-phenotyped participants annually to collect, analyze, and store clinical, cognitive, behavioral, functional, genetic, and neuroimaging data and biospecimens. Participants are ≥50 years old; have no, subjective, or mild cognitive impairment; have a study partner; and are eligible to undergo magnetic resonance imaging (MRI). Recruitment is community-based including advertisements, word-of-mouth, community events, and physician referrals. At baseline, following informed consent, participants complete detailed web-based surveys (e.g., demographics, health history, risk and resilience factors), followed by two half-day visits which include neurological exams, cognitive and functional assessments, an overnight sleep study, and biospecimen collection. Structural and functional MRI is completed by all participants and a subset also consent to amyloid PET imaging. Annual follow-up visits repeat the same data and biospecimen collection as baseline, except that MRIs are conducted every other year after baseline. ETHICS AND EXPECTED IMPACT HBI has been approved by the University of Miami Miller School of Medicine Institutional Review Board. Participants provide informed consent at baseline and are re-consented as needed with protocol changes. Data collected by HBI will lead to breakthroughs in developing new diagnostics and therapeutics, creating comprehensive diagnostic evaluations, and providing the evidence base for precision medicine approaches to dementia prevention with individualized treatment plans.
Collapse
Affiliation(s)
- Lilah M. Besser
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Stephanie Chrisphonte
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Michael J. Kleiman
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Deirdre O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Amie Rosenfeld
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Magdalena Tolea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| |
Collapse
|
6
|
Besser LM, Chrisphonte S, Kleiman MJ, O'Shea D, Rosenfeld A, Tolea M, Galvin JE. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295908. [PMID: 37808766 PMCID: PMC10557773 DOI: 10.1101/2023.09.21.23295908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background The Health Brain Initiative (HBI), established by University of Miami's Comprehensive Center for Brain Health (CCBH), follows racially/ethnically diverse older adults without dementia living in South Florida. With dementia prevention and brain health promotion as an overarching goal, HBI will advance scientific knowledge by developing novel assessments and non-invasive biomarkers of Alzheimer's disease and related dementias (ADRD), examining additive effects of sociodemographic, lifestyle, neurological and biobehavioral measures, and employing innovative, methodologically advanced modeling methods to characterize ADRD risk and resilience factors and transition of brain aging. Methods HBI is a longitudinal, observational cohort study that will follow 500 deeply-phenotyped participants annually to collect, analyze, and store clinical, cognitive, behavioral, functional, genetic, and neuroimaging data and biospecimens. Participants are ≥50 years old; have no, subjective, or mild cognitive impairment; have a study partner; and are eligible to undergo magnetic resonance imaging (MRI). Recruitment is community-based including advertisements, word-of-mouth, community events, and physician referrals. At baseline, following informed consent, participants complete detailed web-based surveys (e.g., demographics, health history, risk and resilience factors), followed by two half-day visits which include neurological exams, cognitive and functional assessments, an overnight sleep study, and biospecimen collection. Structural and functional MRI is completed by all participants and a subset also consent to amyloid PET imaging. Annual follow-up visits repeat the same data and biospecimen collection as baseline, except that MRIs are conducted every other year after baseline. Ethics and expected impact HBI has been approved by the University of Miami Miller School of Medicine Institutional Review Board. Participants provide informed consent at baseline and are re-consented as needed with protocol changes. Data collected by HBI will lead to breakthroughs in developing new diagnostics and therapeutics, create comprehensive diagnostic evaluations, and provide the evidence base for precision medicine approaches to dementia prevention with individualized treatment plans.
Collapse
|