1
|
Cresto N, Givalois L, Badaut J, Janvier A, Genin A, Audinat E, Brewster AL, Marchi N. Bursts of brain erosion: seizures and age-dependent neurological vulnerability. Trends Mol Med 2024:S1471-4914(24)00304-6. [PMID: 39665957 DOI: 10.1016/j.molmed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Hypersynchronous and exaggerated neuronal firing, exemplified by epileptiform activity and seizures, are disruptors of brain function across acute and chronic neuropathological conditions. Here, we focus on how seizure activity, whether as a primary symptom or a secondary comorbid event within a complex pathological setting, adversely impacts neurological trajectories. We discuss experimental and clinical evidence illustrating the participation of neurodegenerative and senescence-like adaptations. Paroxysmal neuronal events, through bidirectional causality, are linked with immune and microvascular changes, disrupting cellular homeostasis and creating a feed-forward loop that intertwines with age-related frailty to deteriorate mental health. We emphasize the clinical significance of early detection of these brain vulnerabilities through biomarkers, monitoring neurodevelopmental risks in children, and tracking neurodegenerative disease progression in aging populations.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Givalois
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France; Laval University, Faculty of Medicine, Department of Psychiatry and Neurosciences, Québec, Canada
| | - Jerome Badaut
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| | - Alicia Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Athenais Genin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amy L Brewster
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, USA.
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Wang H, Ma Y, Jin D, Yang X, Xu X. Ulinastatin modulates NLRP3 inflammasome pathway in PTZ-induced epileptic mice: A potential mechanistic insight. Heliyon 2024; 10:e38050. [PMID: 39386862 PMCID: PMC11462202 DOI: 10.1016/j.heliyon.2024.e38050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Objective The NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome-driven immune-inflammatory response has been shown to play a critical role in epilepsy progression across multiple studies. While Ulinastatin (UTI), an immunomodulatory agent known to target the NLRP3 pathway in neurological disorders, its implications in epilepsy have not been extensively studied. This investigation aims to explore UTI's role and underlying mechanisms in epilepsy. Methods To assess UTI's effects on epilepsy severity, neuroinflammation, and BBB integrity, a pentylenetetrazole (PTZ)-induced epilepsy model in mice and a co-culture system involving BV2 and HT22 cells stimulated by lipopolysaccharide (LPS) and ATP were employed. Techniques utilized included qPCR, Western blotting, ELISA, immunohistochemistry (IHC) staining, Evans Blue dye extravasation, glutamate assays, the Morris water maze, and Annexin V apoptosis assays. Results In the PTZ model, UTI administration led to a substantial decrease in seizure intensity and susceptibility, inhibited NLRP3 inflammasome activation, reduced neuroinflammatory interactions, lowered hippocampal and systemic inflammatory mediator levels, and improved cognitive performance. Furthermore, UTI upregulated claudin-5 expression, a tight junction protein in the endothelium, and diminished Evans Blue dye leakage, indicating improved BBB integrity. In BV2 and HT22 cell co-culture models, UTI exerted neuroprotective effects by mitigating microglia-mediated neurotoxicity and fostering neuronal recovery. Conclusions The findings demonstrate that UTI exerts transformative regulatory effects on the NLRP3 inflammasome in epilepsy models. This intervention effectively suppresses neuroinflammation, lessens seizure severity and susceptibility, and ameliorates epilepsy-related BBB dysfunction and cognitive impairments.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuzhu Ma
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongmei Jin
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinlei Yang
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangping Xu
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Zhou X, Liu Y, Wu Z, Zhang X, Tao H. Alzheimer's disease and epilepsy: Research hotspots for comorbidity in the era of global aging. Epilepsy Behav 2024; 157:109849. [PMID: 38820684 DOI: 10.1016/j.yebeh.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Neurological conditions such as Alzheimer's disease (AD) and epilepsy share a significant clinical overlap, particularly in the elderly, with each disorder potentiating the risk of the other. This interplay is significant amidst an aging global demographic. The review explores the classical pathologies of AD, including amyloid-beta plaques and hyperphosphorylated tau, and their potential role in the genesis of epilepsy. It also delves into the imbalance of glutamate and gamma-amino butyric acid activities, a key mechanism in epilepsy that may be influenced by AD pathology. The impact of age of onset on comorbidity is examined, with early-onset AD and Down syndrome presenting higher risks of epilepsy. The review suggests that epilepsy might precede cognitive symptoms in AD, indicating a complex interaction. Sleep modulation is highlighted as a factor, with sleep disturbances potentially contributing to AD progression. The necessity for cautious medication management is emphasized due to the cognitive effects of certain antiepileptic drugs. Animal models are recognized for their importance in understanding the relationship between AD and epilepsy, though creating fully representative models presents a challenge. The review concludes by noting the efficacy of medications such as lamotrigine, levetiracetam, and memantine in managing both conditions and suggests the ketogenic diet and cannabidiol as emerging treatment options, warranting further investigation for comprehensive patient care strategies.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
4
|
Wen W, Zhou J, Zhan C, Wang J. Microglia as a Game Changer in Epilepsy Comorbid Depression. Mol Neurobiol 2024; 61:4021-4037. [PMID: 38048030 DOI: 10.1007/s12035-023-03810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
As one of the most common neurological diseases, epilepsy is often accompanied by psychiatric disorders. Depression is the most universal comorbidity of epilepsy, especially in temporal lobe epilepsy (TLE). Therefore, it is urgently needed to figure out potential mechanisms and the optimization of therapeutic strategies. Microglia play a pivotal role in the coexistent relationship between epilepsy and depression. Activated microglia released cytokines like IL-6 and IL-1β, orchestrating neuroinflammation especially in the hippocampus, worsening both depression and epilepsy. The decrease of intracellular K+ is a common part in various molecular changes. The P2X7-NLRP3-IL-1β is a major inflammatory pathway that disrupts brain network. Extra ATP and CX3CL1 also lead to neuronal excitotoxicity and blood-brain barrier (BBB) disruption. Regulating neuroinflammation aiming at microglia-related molecules is capable of suspending the vicious mutual aggravating circle of epilepsy and depression. Other overlaps between epilepsy and depression lie in transcriptomic, neuroimaging, diagnosis and treatment. Hippocampal sclerosis (HS) and amygdala enlargement (AE) may be the underlying macroscopic pathological changes according to current studies. Extant evidence shows that cognitive behavioral therapy (CBT) and antidepressants like selective serotonin-reuptake inhibitors (SSRIs) are safe, but the effect is limited. Improvement in depression is likely to reduce the frequency of seizure. More comprehensive experiments are warranted to better understand the relationship between them.
Collapse
Affiliation(s)
- Wenrong Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingsheng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chang'an Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Kalyvas AC, Dimitriou M, Ioannidis P, Grigoriadis N, Afrantou T. Alzheimer's Disease and Epilepsy: Exploring Shared Pathways and Promising Biomarkers for Future Treatments. J Clin Med 2024; 13:3879. [PMID: 38999445 PMCID: PMC11242231 DOI: 10.3390/jcm13133879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Alzheimer's disease (AD) and epilepsy represent two complex neurological disorders with distinct clinical manifestations, yet recent research has highlighted their intricate interplay. This review examines the association between AD and epilepsy, with particular emphasis on late-onset epilepsy of unknown etiology, increasingly acknowledged as a prodrome of AD. It delves into epidemiology, pathogenic mechanisms, clinical features, diagnostic characteristics, treatment strategies, and emerging biomarkers to provide a comprehensive understanding of this relationship. Methods: A comprehensive literature search was conducted, identifying 128 relevant articles published between 2018 and 2024. Results: Findings underscore a bidirectional relationship between AD and epilepsy, indicating shared pathogenic pathways that extend beyond traditional amyloid-beta and Tau protein pathology. These pathways encompass neuroinflammation, synaptic dysfunction, structural and network alterations, as well as molecular mechanisms. Notably, epileptic activity in AD patients may exacerbate cognitive decline, necessitating prompt detection and treatment. Novel biomarkers, such as subclinical epileptiform activity detected via advanced electroencephalographic techniques, offer promise for early diagnosis and targeted interventions. Furthermore, emerging therapeutic approaches targeting shared pathogenic mechanisms hold potential for disease modification in both AD and epilepsy. Conclusions: This review highlights the importance of understanding the relationship between AD and epilepsy, providing insights into future research directions. Clinical data and diagnostic methods are also reviewed, enabling clinicians to implement more effective treatment strategies.
Collapse
Affiliation(s)
- Athanasios-Christos Kalyvas
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Maria Dimitriou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| |
Collapse
|
6
|
Aguilar-Castillo MJ, Cabezudo-García P, García-Martín G, Lopez-Moreno Y, Estivill-Torrús G, Ciano-Petersen NL, Oliver-Martos B, Narváez-Pelaez M, Serrano-Castro PJ. A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis. Int J Mol Sci 2024; 25:6488. [PMID: 38928193 PMCID: PMC11487433 DOI: 10.3390/ijms25126488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
A central role for neuroinflammation in epileptogenesis has recently been suggested by several investigations. This systematic review explores the role of inflammatory mediators in epileptogenesis, its association with seizure severity, and its correlation with drug-resistant epilepsy (DRE). The study analysed articles published in JCR journals from 2019 to 2024. The search strategy comprised the MESH, free terms of "Neuroinflammation", and selective searches for the following single biomarkers that had previously been selected from the relevant literature: "High mobility group box 1/HMGB1", "Toll-Like-Receptor 4/TLR-4", "Interleukin-1/IL-1", "Interleukin-6/IL-6", "Transforming growth factor beta/TGF-β", and "Tumour necrosis factor-alpha/TNF-α". These queries were all combined with the MESH terms "Epileptogenesis" and "Epilepsy". We found 243 articles related to epileptogenesis and neuroinflammation, with 356 articles from selective searches by biomarker type. After eliminating duplicates, 324 articles were evaluated, with 272 excluded and 55 evaluated by the authors. A total of 21 articles were included in the qualitative evaluation, including 18 case-control studies, 2 case series, and 1 prospective study. As conclusion, this systematic review provides acceptable support for five biomarkers, including TNF-α and some of its soluble receptors (sTNFr2), HMGB1, TLR-4, CCL2 and IL-33. Certain receptors, cytokines, and chemokines are examples of neuroinflammation-related biomarkers that may be crucial for the early diagnosis of refractory epilepsy or may be connected to the control of epileptic seizures. Their value will be better defined by future studies.
Collapse
Affiliation(s)
| | - Pablo Cabezudo-García
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Guillermina García-Martín
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Yolanda Lopez-Moreno
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Nicolas Lundahl Ciano-Petersen
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
| | - Begoña Oliver-Martos
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Departamento de Fisiologia Animal, Biologìa Celular y Genética, Universidad de Málaga, 29010 Málaga, Spain
| | - Manuel Narváez-Pelaez
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
- Departamento de Fisiología, Universidad de Málaga, 29010 Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
7
|
Kosagisharaf JR, Hegde ML. Introduction to The Special Issue: Novel Molecular Pathways and Therapeutic Challenges in Neurodegenerative Diseases. J Alzheimers Dis 2023; 94:S3-S7. [PMID: 37393511 PMCID: PMC10473067 DOI: 10.3233/jad-230622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Affiliation(s)
- Jagannatha Rao Kosagisharaf
- Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram, Andhra Pradesh, India
- SNI, INDICASAT AIP, Panama
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Division of DNA Repair Research, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|