1
|
Jobin B, Magdamo C, Delphus D, Runde A, Reineke S, Soto AA, Ergun B, Albers AD, Albers MW. AROMHA Brain Health Test: A Remote Olfactory Assessment as a Screen for Cognitive Impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.03.24311283. [PMID: 39211882 PMCID: PMC11361214 DOI: 10.1101/2024.08.03.24311283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cost-effective, noninvasive screening methods for preclinical Alzheimer's disease (AD) and other neurocognitive disorders remain an unmet need. The olfactory neural circuits develop AD pathological changes prior to symptom onset. To probe these vulnerable circuits, we developed the digital remote AROMHA Brain Health Test (ABHT), an at-home odor identification, discrimination, memory, and intensity assessment. The ABHT was self-administered among cognitively normal (CN) English and Spanish speakers (n=127), participants with subjective cognitive complaints (SCC; n=34), and mild cognitive impairment (MCI; n=19). Self-administered tests took place remotely at home under unobserved (among interested CN participants) and observed modalities (CN, SCC, and MCI), as well as in-person with a research assistant present (CN, SCC, and MCI). Olfactory performance was similar across observed and unobserved remote self-administration and between English and Spanish speakers. Odor memory, identification, and discrimination scores decreased with age, and olfactory identification and discrimination were lower in the MCI group compared to CN and SCC groups, independent of age, sex, and education. The ABHT revealed age-related olfactory decline, and discriminated CN older adults from those with cognitive impairment. Replication of our results in other populations would support the use of the ABHT to identify and monitor individuals at risk for developing dementia.
Collapse
|
2
|
Huang L, Li Q, Lu Y, Pan F, Cui L, Wang Y, Miao Y, Chen T, Li Y, Wu J, Chen X, Jia J, Guo Q. Consensus on rapid screening for prodromal Alzheimer's disease in China. Gen Psychiatr 2024; 37:e101310. [PMID: 38313393 PMCID: PMC10836380 DOI: 10.1136/gpsych-2023-101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia, characterised by cerebral amyloid-β deposition, pathological tau and neurodegeneration. The prodromal stage of AD (pAD) refers to patients with mild cognitive impairment (MCI) and evidence of AD's pathology. At this stage, disease-modifying interventions should be used to prevent the progression to dementia. Given the inherent heterogeneity of MCI, more specific biomarkers are needed to elucidate the underlying AD's pathology. Although the uses of cerebrospinal fluid and positron emission tomography are widely accepted methods for detecting AD's pathology, their clinical applications are limited by their high costs and invasiveness, particularly in low-income areas in China. Therefore, to improve the early detection of Alzheimer's disease (AD) pathology through cost-effective screening methods, a panel of 45 neurologists, psychiatrists and gerontologists was invited to establish a formal consensus on the screening of pAD in China. The supportive evidence and grades of recommendations are based on a systematic literature review and focus group discussion. National meetings were held to allow participants to review, vote and provide their expert opinions to reach a consensus. A majority (two-thirds) decision was used for questions for which consensus could not be reached. Recommended screening methods are presented in this publication, including neuropsychological assessment, peripheral biomarkers and brain imaging. In addition, a general workflow for screening pAD in China is established, which will help clinicians identify individuals at high risk and determine therapeutic targets.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yatian Li
- Shanghai BestCovered, Shanghai, China
| | | | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianping Jia
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
4
|
Bothwell AR, Resnick SM, Ferrucci L, Tian Q. Associations of olfactory function with brain structural and functional outcomes. A systematic review. Ageing Res Rev 2023; 92:102095. [PMID: 37913831 PMCID: PMC10872938 DOI: 10.1016/j.arr.2023.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
In aging, olfactory deficits have been associated with lower cognition and motor function. Olfactory dysfunction is also one of the earliest features of neurodegenerative disease. A comprehensive review of the neural correlates of olfactive function may reveal mechanisms underlying the associations among olfaction, cognition, motor function, and neurodegenerative diseases. Here, we summarize existing knowledge on the relationship between brain structural and functional measures and olfaction in older adults without and with cognitive impairment, including Alzheimer's disease. We identified 33 eligible studies (30 MRI/DTI,3 fMRI); 31 were cross-sectional, most assessed odor identification, and few examined multiple brain areas. Lower olfactory function was associated with smaller volumes in the temporal lobe (hippocampus,parahippocampal gyrus,fusiform gyrus), olfactory-related regions (piriform cortex,amygdala,entorhinal cortex), pre- and postcentral gyri, and globus pallidus. During aging, olfactory impairment may be associated with pathology in brain areas important for motor function and cognition, especially memory. Future longitudinal studies that include neuroimaging across different brain areas are warranted to determine the neurobiological changes underlying olfactory changes in the aging brain and the progression of neurodegeneration.
Collapse
Affiliation(s)
- Adam R Bothwell
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Qu Tian
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|