1
|
Walker DM, Swoboda CM, Garman AN, DePUCCIO MJ, Mayers E, Sinclair A, McALEARNEY AS. Does Climate Change Affect Health? Beliefs from the Health Information National Trends Survey. JOURNAL OF HEALTH COMMUNICATION 2024; 29:11-17. [PMID: 38809135 DOI: 10.1080/10810730.2024.2360023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Climate change is currently and will continue impacting human health, however, beliefs about the level of threat vary by demographics, region, and ideology. The purpose of this study was to assess factors related to climate change and health beliefs using cross-sectional data from the Health Information National Trends Survey (HINTS). Data from 5,075 respondents in the 2022 iteration of HINTS was used for this study. Chi-square tests were used to evaluate demographic differences among those who believe climate change will harm health a lot compared to some, a little, or not at all. Generalized ordinal logistic regression models were used to examine the relationship between the belief that climate change will harm health and independent variables regarding trust in scientists, health recommendations from experts, and demographic characteristics. Female, Black, Hispanic, and college graduate respondents had higher odds and people in the Southern U.S. those aged 35-49, 50-64, and 75years or older had significantly lower odds of believing climate change would harm their health. Those who trust information about cancer from scientists and those that believe health recommendations from experts conflict or change had higher odds of believing climate change would harm health. Our analysis highlights factors that impact climate change and health beliefs, which may provide targets for tailoring public health messages to address this issue.
Collapse
Affiliation(s)
- Daniel M Walker
- The Center for the Advancement of Team Science, Analytics, and Systems Thinking in Health Services and Implementation Science Research (CATALYST), College of Medicine, The Ohio State University Columbus, Ohio, USA
- Department of Family and Community Medicine, College of Medicine, The Ohio State University Columbus, Ohio, USA
| | - Christine M Swoboda
- The Center for the Advancement of Team Science, Analytics, and Systems Thinking in Health Services and Implementation Science Research (CATALYST), College of Medicine, The Ohio State University Columbus, Ohio, USA
| | - Andrew N Garman
- Department of Health Systems Management, Rush University, Chicago, Illinois, USA
- Geneva Sustainability Centre, International Hospital Federation, Geneva, Switzerland
| | - Matthew J DePUCCIO
- Department of Health Systems Management, Rush University, Chicago, Illinois, USA
| | - Elizabeth Mayers
- The Center for the Advancement of Team Science, Analytics, and Systems Thinking in Health Services and Implementation Science Research (CATALYST), College of Medicine, The Ohio State University Columbus, Ohio, USA
- College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Anneliese Sinclair
- The Center for the Advancement of Team Science, Analytics, and Systems Thinking in Health Services and Implementation Science Research (CATALYST), College of Medicine, The Ohio State University Columbus, Ohio, USA
| | - Ann Scheck McALEARNEY
- The Center for the Advancement of Team Science, Analytics, and Systems Thinking in Health Services and Implementation Science Research (CATALYST), College of Medicine, The Ohio State University Columbus, Ohio, USA
- Department of Family and Community Medicine, College of Medicine, The Ohio State University Columbus, Ohio, USA
- College of Public Health, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Fajardo-Serrano A, Rico AJ, Roda E, Honrubia A, Arrieta S, Ariznabarreta G, Chocarro J, Lorenzo-Ramos E, Pejenaute A, Vázquez A, Lanciego JL. Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10040746. [PMID: 35453499 PMCID: PMC9025350 DOI: 10.3390/biomedicines10040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.
Collapse
Affiliation(s)
- Ana Fajardo-Serrano
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| | - Alberto J. Rico
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elvira Roda
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Adriana Honrubia
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Sandra Arrieta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Goiaz Ariznabarreta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Julia Chocarro
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elena Lorenzo-Ramos
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alvaro Pejenaute
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alfonso Vázquez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Department of Neurosurgery, Servicio Navarro de Salud, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - José Luis Lanciego
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| |
Collapse
|
3
|
Murray SJ, Mitchell NL. The Translational Benefits of Sheep as Large Animal Models of Human Neurological Disorders. Front Vet Sci 2022; 9:831838. [PMID: 35242840 PMCID: PMC8886239 DOI: 10.3389/fvets.2022.831838] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
The past two decades have seen a considerable rise in the use of sheep to model human neurological disorders. While each animal model has its merits, sheep have many advantages over small animal models when it comes to studies on the brain. In particular, sheep have brains more comparable in size and structure to the human brain. They also have much longer life spans and are docile animals, making them useful for a wide range of in vivo studies. Sheep are amenable to regular blood and cerebrospinal fluid sampling which aids in biomarker discovery and monitoring of treatment efficacy. Several neurological diseases have been found to occur naturally in sheep, however sheep can also be genetically engineered or experimentally manipulated to recapitulate disease or injury. Many of these types of sheep models are currently being used for pre-clinical therapeutic trials, particularly gene therapy, with studies from several models culminating in potential treatments moving into clinical trials. This review will provide an overview of the benefits of using sheep to model neurological conditions, and highlight naturally occurring and experimentally induced sheep models that have demonstrated translational validity.
Collapse
Affiliation(s)
- Samantha J. Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| | | |
Collapse
|
4
|
Trovatelli M, Brizzola S, Zani DD, Castellano A, Mangili P, Riva M, Woolley M, Johnson D, Rodriguez Y Baena F, Bello L, Falini A, Secoli R. Development and in vivo assessment of a novel MRI-compatible headframe system for the ovine animal model. Int J Med Robot 2021; 17:e2257. [PMID: 33817973 DOI: 10.1002/rcs.2257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The brain of sheep has primarily been used in neuroscience as an animal model because of its similarity to the human brain, in particular if compared to other models such as the lissencephalic rodent brain. Their brain size also makes sheep an ideal model for the development of neurosurgical techniques using conventional clinical CT/MRI scanners and stereotactic systems for neurosurgery. METHODS In this study, we present the design and validation of a new CT/MRI compatible head frame for the ovine model and software, with its assessment under two real clinical scenarios. RESULTS Ex-vivo and in vivo trial results report an average linear displacement of the ovine head frame during conventional surgical procedures of 0.81 mm for ex-vivo trials and 0.68 mm for in vivo tests, respectively. CONCLUSIONS These trial results demonstrate the robustness of the head frame system and its suitability to be employed within a real clinical setting.
Collapse
Affiliation(s)
- Marco Trovatelli
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Stefano Brizzola
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Davide Danilo Zani
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and C.E.R.M.A.C., Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Mangili
- Medical Physics Unit, Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Riva
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, Milan, Italy
| | - Max Woolley
- Renishaw Neuro Solutions Ltd., Wotton-Under-Edge, UK
| | - Dave Johnson
- Renishaw Neuro Solutions Ltd., Wotton-Under-Edge, UK
| | - Ferdinando Rodriguez Y Baena
- The Mechatronics in Medicine Laboratory, Department of Mechanical Engineering, Imperial College London, London, UK
| | - Lorenzo Bello
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and C.E.R.M.A.C., Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Riccardo Secoli
- The Mechatronics in Medicine Laboratory, Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
5
|
Murillo-González JA, Notario B, Maldonado E, Martinez-Sanz E, Barrio MC, Herrera M. Connections between the internal and the external capsules and the globus pallidus in the sheep: A dichromate stain X-ray microtomographic study. Anat Histol Embryol 2020; 50:84-92. [PMID: 32794251 DOI: 10.1111/ahe.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
Sheep are recognized as useful species for translational neurodegeneration research, in particular for the study of Huntington disease. There is a lack of information regarding the detailed anatomy and connections of the basal ganglia of sheep, in normal myeloarchitectonics and in tract-tracing studies. In this work, the organization of the corticostriatal projections at the level of the putamen and globus pallidus (GP) are explored. For the first time, the myeloarchitectonic pattern of connections between the internal (IC) and the external (EC) capsules with the GP have been investigated in the sheep. Formaldehyde-fixed blocks of the striatum were treated with a metallic stain containing potassium dichromate and visualized using micro-CT (µ-CT). The trivalent chromium (Cr3+), attached to myelin phospholipids, imparts a differential contrast to the grey and white matter compartments, which allows the visualization of myelinated fascicles in µ-CT images. The fascicles were classified according to their topographical location in dorsal supreme fascicles (X, Y, apex) arising from the IC and EC; pre-commissurally, basal fascicles connecting the ventral part of the EC with the lateral zone of the ventral pallidum (VP) and, post-commissurally, superior (Z1 ), middle (Z2 ) and lower (Z3 ) fascicles, connecting at different levels the EC with the GP. The results suggest that the presumptive cortical efferent and afferent fibres to the pallidum could be organized according to a dorsal to ventrolateral topography in the sheep, similar to that seen in other mammals. The proposed methodology has the potential to delineate the myeloarchitectonic patterns of nervous systems and tracts.
Collapse
Affiliation(s)
| | - Belen Notario
- Microcomputed Tomography Lab, Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Burgos, Spain
| | - Estela Maldonado
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Elena Martinez-Sanz
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - M Carmen Barrio
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Manuel Herrera
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Smatlikova P, Juhas S, Juhasova J, Suchy T, Hubalek Kalbacova M, Ellederova Z, Motlik J, Klima J. Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Pig Transgenic Model Expressing Human Mutant Huntingtin. J Huntingtons Dis 2018; 8:33-51. [PMID: 30584151 DOI: 10.3233/jhd-180303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although the highest expression of mutant huntingtin (mtHtt) was observed in the brain, its negative effects were also apparent in other tissues. Specifically, mtHtt impairs metabolic homeostasis and causes transcriptional dysregulation in adipose tissue. Adipogenic differentiation can be induced by the activation of two transcription factors: CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). These same transcription factors were found to be compromised in some tissues of Huntington's disease (HD) mouse models and in lymphocytes of HD patients. OBJECTIVE This study investigated the adipogenic potential of mesenchymal stem cells (MSCs) derived from transgenic Huntington's disease (TgHD) minipigs expressing human mtHtt (1-548aa) containing 124 glutamines. Two differentiation conditions were used, employing PPARγ agonist rosiglitazone or indomethacin. METHODS Bone marrow MSCs were isolated from TgHD and WT minipig siblings and compared by their cluster of differentiation using flow cytometry. Their adipogenic potential in vitro was analyzed using quantitative immunofluorescence and western blot analysis of transcription factors and adipogenic markers. RESULTS Flow cytometry analysis did not reveal any significant difference between WT and TgHD MSCs. Nevertheless, following differentiation into adipocytes, the expression of CEBPα nuclear, PPARγ and adipogenic marker FABP4/AP2 were significantly lower in TgHD cells compared to WT cells. In addition, we proved both rosiglitazone and indomethacin to be efficient for adipogenic differentiation of porcine MSCs, with rosiglitazone showing a better adipogenic profile. CONCLUSIONS We demonstrated a negative influence of mtHtt on adipogenic differentiation of porcine MSCs in vitro associated with compromised expression of adipogenic transcription factors.
Collapse
Affiliation(s)
- Petra Smatlikova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Stefan Juhas
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jana Juhasova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Tomas Suchy
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Zdenka Ellederova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jan Motlik
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jiri Klima
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
7
|
Pfister EL, DiNardo N, Mondo E, Borel F, Conroy F, Fraser C, Gernoux G, Han X, Hu D, Johnson E, Kennington L, Liu P, Reid SJ, Sapp E, Vodicka P, Kuchel T, Morton AJ, Howland D, Moser R, Sena-Esteves M, Gao G, Mueller C, DiFiglia M, Aronin N. Artificial miRNAs Reduce Human Mutant Huntingtin Throughout the Striatum in a Transgenic Sheep Model of Huntington's Disease. Hum Gene Ther 2018; 29:663-673. [PMID: 29207890 DOI: 10.1089/hum.2017.199] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease caused by a genetic expansion of the CAG repeat region in the huntingtin (HTT) gene. Studies in HD mouse models have shown that artificial miRNAs can reduce mutant HTT, but evidence for their effectiveness and safety in larger animals is lacking. HD transgenic sheep express the full-length human HTT with 73 CAG repeats. AAV9 was used to deliver unilaterally to HD sheep striatum an artificial miRNA targeting exon 48 of the human HTT mRNA under control of two alternative promoters: U6 or CβA. The treatment reduced human mutant (m) HTT mRNA and protein 50-80% in the striatum at 1 and 6 months post injection. Silencing was detectable in both the caudate and putamen. Levels of endogenous sheep HTT protein were not affected. There was no significant loss of neurons labeled by DARPP32 or NeuN at 6 months after treatment, and Iba1-positive microglia were detected at control levels. It is concluded that safe and effective silencing of human mHTT protein can be achieved and sustained in a large-animal brain by direct delivery of an AAV carrying an artificial miRNA.
Collapse
Affiliation(s)
- Edith L Pfister
- 1 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Natalie DiNardo
- 1 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Erica Mondo
- 2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Florie Borel
- 3 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Faith Conroy
- 1 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Cara Fraser
- 4 Preclinical, Imaging, and Research Laboratories, South Australian Health and Medical Research Institute , Gilles Plains, South Australia
| | - Gwladys Gernoux
- 3 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Xin Han
- 5 West China School of Medicine, West China Hospital, Sichuan University. Chengdu , China
| | - Danjing Hu
- 5 West China School of Medicine, West China Hospital, Sichuan University. Chengdu , China
| | - Emily Johnson
- 1 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts.,6 Geisel School of Medicine, Dartmouth College , Hanover, New Hampshire
| | - Lori Kennington
- 1 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - PengPeng Liu
- 5 West China School of Medicine, West China Hospital, Sichuan University. Chengdu , China
| | - Suzanne J Reid
- 7 School of Biological Sciences, University of Auckland , Auckland, New Zealand
| | - Ellen Sapp
- 8 MassGeneral Institute for Neurodegenerative Disease , Charlestown, Massachusetts
| | - Petr Vodicka
- 8 MassGeneral Institute for Neurodegenerative Disease , Charlestown, Massachusetts.,9 Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences , Libechov, Czech Republic
| | - Tim Kuchel
- 4 Preclinical, Imaging, and Research Laboratories, South Australian Health and Medical Research Institute , Gilles Plains, South Australia
| | - A Jennifer Morton
- 10 Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge, United Kingdom
| | - David Howland
- 11 CHDI Foundation/CHDI Management, Princeton, New Jersey
| | - Richard Moser
- 12 Department of Neurosurgery, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Miguel Sena-Esteves
- 3 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Guangping Gao
- 3 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Christian Mueller
- 3 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,13 Department of Pediatrics, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Marian DiFiglia
- 8 MassGeneral Institute for Neurodegenerative Disease , Charlestown, Massachusetts
| | - Neil Aronin
- 1 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts.,14 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
8
|
Lévy F, Batailler M, Meurisse M, Migaud M. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior. Front Neurosci 2017; 11:570. [PMID: 29109674 PMCID: PMC5660097 DOI: 10.3389/fnins.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior.
Collapse
Affiliation(s)
- Frederic Lévy
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Batailler
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Maryse Meurisse
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Migaud
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
9
|
Golebiowski D, van der Bom IMJ, Kwon CS, Miller AD, Petrosky K, Bradbury AM, Maitland S, Kühn AL, Bishop N, Curran E, Silva N, GuhaSarkar D, Westmoreland SV, Martin DR, Gounis MJ, Asaad WF, Sena-Esteves M. Direct Intracranial Injection of AAVrh8 Encoding Monkey β-N-Acetylhexosaminidase Causes Neurotoxicity in the Primate Brain. Hum Gene Ther 2017; 28:510-522. [PMID: 28132521 DOI: 10.1089/hum.2016.109] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in β-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or β-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and β-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/β developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/β, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/β intracranial injection among different species, despite encoding for self-proteins.
Collapse
Affiliation(s)
- Diane Golebiowski
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Imramsjah M J van der Bom
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Churl-Su Kwon
- 5 Department of Neurosurgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Andrew D Miller
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Keiko Petrosky
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Allison M Bradbury
- 7 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University , Alabama.,8 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Alabama
| | - Stacy Maitland
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Anna Luisa Kühn
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Nina Bishop
- 9 Department of Animal Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Elizabeth Curran
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Nilsa Silva
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Dwijit GuhaSarkar
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Susan V Westmoreland
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Douglas R Martin
- 7 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University , Alabama.,8 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Alabama
| | - Matthew J Gounis
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Wael F Asaad
- 10 Department of Neurosurgery, Alpert Medical School, Brown University , Providence, Rhode Island.,11 Brown Institute for Brain Science, Brown University , Providence, Rhode Island.,12 Rhode Island Hospital , Providence, Rhode Island
| | - Miguel Sena-Esteves
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|