1
|
Saade J, Mestre TA. Huntington's Disease: Latest Frontiers in Therapeutics. Curr Neurol Neurosci Rep 2024; 24:255-264. [PMID: 38861215 DOI: 10.1007/s11910-024-01345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW Huntington's disease (HD) is an autosomal-dominant disorder caused by a pathological expansion of a trinucleotide repeat (CAG) on exon 1 of the huntingtin (HTT) gene. HD is characterized by the presence of chorea, alongside other hyperkinesia, parkinsonism and a combination of cognitive and behavioural features. Currently, there are no disease-modifying therapies (DMTs) for HD, and the only intervention(s) with approved indication target the treatment of chorea. This article reviews recent research on the clinical development of DMTs and newly developed tools that enhance clinical trial design towards a successful DMT in the future. RECENT FINDINGS HD is living in an era of target-specific drug development with emphasis on the mechanisms related to mutant Huntingtin (HTT) protein. Examples include antisense oligonucleotides (ASO), splicing modifiers and microRNA molecules that aim to reduce the levels of mutant HTT protein. After initial negative results with ASO molecules Tominersen and WVE-120101/ WVE-120102, the therapeutic landscape continues to expand, with various trials currently under development to document proof-of-concept and safety/tolerability. Immune-targeted therapies have also been evaluated in early-phase clinical trials, with promising preliminary findings. The possibility of quantifying mHTT in CSF, along with the development of an integrated biological staging system in HD are important innovations applicable to clinical trial design that enhance the drug development process. Although a future in HD with DMTs remains a hope for those living with HD, care partners and care providers, the therapeutic landscape is promising, with various drug development programs underway following a targeted approach supported by disease-specific biomarkers and staging frameworks.
Collapse
Affiliation(s)
- Joseph Saade
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Tiago A Mestre
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- The University of Ottawa Brain and Research Institute, Ottawa, ON, Canada.
- Parkinson's Disease and Movement Disorder Clinic, Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Estevez-Fraga C, Tabrizi SJ, Wild EJ. Huntington's Disease Clinical Trials Corner: March 2024. J Huntingtons Dis 2024; 13:1-14. [PMID: 38489195 DOI: 10.3233/jhd-240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
In this edition of the Huntington's Disease Clinical Trials Update, we expand on the ongoing program from VICO Therapeutics and on the recently terminated VIBRANT-HD clinical trials. We also discuss updates from uniQure's AMT-130 program and PTC therapeutics' trial of PTC518 and list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
3
|
Estevez-Fraga C, Tabrizi SJ, Wild EJ. Huntington's Disease Clinical Trials Corner: August 2023. J Huntingtons Dis 2023; 12:169-185. [PMID: 37483021 PMCID: PMC10473124 DOI: 10.3233/jhd-239001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
In this edition of the Huntington's Disease Clinical Trials Corner, we expand on the GENERATION HD2 (tominersen) and on the Asklepios Biopharmaceutical/BrainVectis trial with AB-1001. We also comment on the recent findings from the PROOF-HD trial, and list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Edward J. Wild
- Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
4
|
Estevez-Fraga C, Tabrizi SJ, Wild EJ. Huntington's Disease Clinical Trials Corner: November 2022. J Huntingtons Dis 2022; 11:351-367. [PMID: 36463457 DOI: 10.3233/jhd-229006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this edition of the Huntington's Disease Clinical Trials Corner, we expand on the PIVOT HD (PTC518), and SIGNAL (pepinemab) trials, and list all currently registered and ongoing clinical trials in Huntington's disease.We also introduce a 'breaking news' section highlighting recent updates about the SELECT HD, uniQure AMT-130, and VIBRANT HD clinical trials.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
5
|
Bocoum A, Coulibaly T, Ouologuem M, Cissé L, Diallo SH, Maiga BB, Dembélé K, Diallo S, Coulibaly SDP, Kané F, Coulibaly T, Coulibaly D, Taméga A, Yalcouyé A, Diarra S, Dembélé ME, Maiga AB, Cissé CAK, Traoré O, Fischbeck KH, Guinto CO, Maiga Y, Landouré G. Clinical and Genetic Aspects of Huntington's Disease in the Malian Population. J Huntingtons Dis 2022; 11:195-201. [PMID: 35311712 DOI: 10.3233/jhd-220529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by mutation in the HTT gene and characterized by involuntary movements as well as cognitive and behavioral impairment. Since its first description 150 years ago, studies have been reported worldwide. However, genetically confirmed cases have been scarce in Africa. OBJECTIVE To describe the clinical and genetic aspects of HD in the Malian population. METHODS Patients with HD phenotype and their relatives were enrolled after obtaining consent. Symptoms were assessed using the Total Motor Scale (TMS) of the United Huntington's Disease Rating Scale (UHDRS) and the Mini-Mental State Examination (MMSE). Brain imaging and blood tests were performed to exclude other causes. DNA was extracted for HTT sequencing. RESULTS Eighteen patients (13 families) with a HD phenotype were evaluated. A familial history of the disease was found in 84.6% with 55.5% of maternal transmission. The average length of the HTT CAG repeat was 43.6±11.5 (39-56) CAGs. The mean age at onset was 43.1±9.7years. Choreic movements were the predominant symptoms (100% of the cases) with an average TMS of 49.4±30.8, followed by cognitive impairment (average MMSE score: 23.0±12.0) and psychiatric symptoms with 22.2% and 44.4%, respectively. CONCLUSION This is one of the largest HD cohorts reported in Africa. Increasing access to genetic testing could uncover many other HD cases and disease-modifying genetic variants. Future haplotype and psychosocial studies may inform the origin of the Malian mutation and the impact of the disease on patients and their relatives.
Collapse
Affiliation(s)
- Abdoulaye Bocoum
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | | | | | - Lassana Cissé
- Service de Neurologie, CHU du Point "G", Bamako, Mali
| | - Seybou H Diallo
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Service de Neurologie, CHU de Gabriel Touré, Bamako, Mali
| | | | | | | | - Souleymane Dit Papa Coulibaly
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Service de Psychiatrie, CHU du Point "G", Bamako, Mali
| | - Fousseyni Kané
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Thomas Coulibaly
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Service de Neurologie, CHU du Point "G", Bamako, Mali
| | | | - Abdoulaye Taméga
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | | | - Salimata Diarra
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Service de Psychiatrie, CHU du Point "G", Bamako, Mali
| | | | - Alassane B Maiga
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Cheick A K Cissé
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Oumou Traoré
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | | | - Cheick O Guinto
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Service de Neurologie, CHU du Point "G", Bamako, Mali
| | - Youssoufa Maiga
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Service de Neurologie, CHU de Gabriel Touré, Bamako, Mali
| | - Guida Landouré
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Service de Neurologie, CHU du Point "G", Bamako, Mali.,Neurogenetics Branch, NINDS, NIH, Bethesda, MD, USA
| | | |
Collapse
|
6
|
Estevez-Fraga C, Rodrigues FB, Tabrizi SJ, Wild EJ. Huntington's Disease Clinical Trials Corner: April 2022. J Huntingtons Dis 2022; 11:105-118. [PMID: 35570498 DOI: 10.3233/jhd-229002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this edition of the Huntington's Disease Clinical Trials Corner we expand on GENERATION HD1, PRECISION-HD1 and PRECISION-HD2, SELECT-HD, and VIBRANT-HD trials, and list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Filipe B Rodrigues
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Lisbon, Portugal
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
7
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
8
|
Langbehn DR, Fine EM, Meier A, Hersch S. Utility of the Huntington's Disease Prognostic Index Score for a Perimanifest Clinical Trial. Mov Disord 2022; 37:1040-1046. [PMID: 35170086 PMCID: PMC9306552 DOI: 10.1002/mds.28944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Background Subtle neurodegenerative motor and cognitive impairments accumulate over a prodromal period several years before clinical diagnosis of Huntington's disease (HD). The inclusion of prodromal individuals in therapeutic trials would facilitate testing of therapies early in the disease course and the development of treatments intended to prevent or delay disability. Objectives We evaluate the normalized prognostic index (PIN) score as a tool to select participants for a perimanifest trial. We explore anticipated PIN‐based inclusion rates from the preHD screening population and estimate sample‐size requirements based on PIN threshold, trial duration, and outcome measure. Methods Individual participant data from ENROLL‐HD were used to fit mixed effect linear models to assess longitudinal changes in clinical metrics for participants with early‐manifest HD and PIN‐stratified preHD subcohorts. Results A PIN threshold of 0.0 was met by 40% of the preHD participants in ENROLL‐HD; 39.4% and 55.2% progressed to new diagnoses of early‐manifest HD within 2 and 3 years, respectively. Various PIN thresholds also enabled the selection of specified ratios of prodromal preHD to early manifest HD participants for a perimanifest trial. Estimated sample sizes for a trial enrolling prodromal preHD (PIN > 0.0) and stage 1 and 2 motor‐diagnosed participants varied depending on the composition of the screening pool, the length of follow‐up (1, 2, or 3 years), and outcome measure. Conclusions The composition of a perimanifest clinical trial population can be defined using preselected PIN thresholds, facilitating the assessment of potential disease‐modifying therapies in HD. © 2022 Voyager Therapeutics, Inc. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Douglas R Langbehn
- Department of Psychiatry, University of Iowa Carver College of Medicine, Psychiatry Research, Iowa City, Iowa, USA
| | | | - Andreas Meier
- Voyager Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Steven Hersch
- Voyager Therapeutics, Inc., Cambridge, Massachusetts, USA.,Eisai Inc., Woodcliff Lake, New Jersey, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Chan HJ, Yanshree, Roy J, Tipoe GL, Fung ML, Lim LW. Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease. Int J Mol Sci 2021; 22:10151. [PMID: 34576314 PMCID: PMC8471075 DOI: 10.3390/ijms221810151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear. In this narrative review, we discuss both preclinical studies and clinical trials on the therapeutic potential of human stem cells in AD. Preclinical studies have successfully differentiated stem cells into neurons in vitro, indicating the potential viability of stem cell therapy in neurodegenerative diseases. Preclinical studies have also shown that stem cell therapy is safe and effective in improving cognitive performance in animal models, as demonstrated in the Morris water maze test and novel object recognition test. Although few clinical trials have been completed and many trials are still in phase I and II, the initial results confirm the outcomes of the preclinical studies. However, limitations like rejection, tumorigenicity, and ethical issues are still barriers to the advancement of stem cell therapy. In conclusion, the use of stem cells in the treatment of AD shows promise in terms of effectiveness and safety.
Collapse
Affiliation(s)
| | | | | | | | | | - Lee Wei Lim
- School of Biomedical, Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.J.C.); (Y.); (J.R.); (G.L.T.); (M.-L.F.)
| |
Collapse
|
10
|
Kim R, Müller S, Garcia TP. svReg: Structural varying-coefficient regression to differentiate how regional brain atrophy affects motor impairment for Huntington disease severity groups. Biom J 2021; 63:1254-1271. [PMID: 33871905 PMCID: PMC9012319 DOI: 10.1002/bimj.202000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/10/2021] [Accepted: 03/06/2021] [Indexed: 11/06/2022]
Abstract
For Huntington disease, identification of brain regions related to motor impairment can be useful for developing interventions to alleviate the motor symptom, the major symptom of the disease. However, the effects from the brain regions to motor impairment may vary for different groups of patients. Hence, our interest is not only to identify the brain regions but also to understand how their effects on motor impairment differ by patient groups. This can be cast as a model selection problem for a varying-coefficient regression. However, this is challenging when there is a pre-specified group structure among variables. We propose a novel variable selection method for a varying-coefficient regression with such structured variables and provide a publicly available R package svreg for implementation of our method. Our method is empirically shown to select relevant variables consistently. Also, our method screens irrelevant variables better than existing methods. Hence, our method leads to a model with higher sensitivity, lower false discovery rate and higher prediction accuracy than the existing methods. Finally, we found that the effects from the brain regions to motor impairment differ by disease severity of the patients. To the best of our knowledge, our study is the first to identify such interaction effects between the disease severity and brain regions, which indicates the need for customized intervention by disease severity.
Collapse
Affiliation(s)
- Rakheon Kim
- Department of Statistics, Texas A&M University, TX, USA
| | - Samuel Müller
- Department of Mathematics and Statistics, Sydney, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, Australia
| | - Tanya P. Garcia
- Department of Biostatistics, Gillings School of Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Hybrid 2-[18F] FDG PET/MRI in premanifest Huntington's disease gene-expansion carriers: The significance of partial volume correction. PLoS One 2021; 16:e0252683. [PMID: 34115782 PMCID: PMC8195345 DOI: 10.1371/journal.pone.0252683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022] Open
Abstract
Background Huntington’s disease (HD) is an inherited, progressive neurodegenerative disease that has no cure. Striatal atrophy and hypometabolism has been described in HD as far as 15 years before clinical onset and therefore structural and functional imaging biomarkers are the most applied biomarker modalities which call for these to be exact; however, most studies are not considering the partial volume effect and thereby tend to overestimate metabolic reductions, which may bias imaging outcome measures of interventions. Objective Evaluation of partial volume effects in a cohort of premanifest HD gene-expansion carriers (HDGECs). Methods 21 HDGECs and 17 controls had a hybrid 2-[18F]FDG PET/MRI scan performed. Volume measurements and striatal metabolism, both corrected and uncorrected for partial volume effect were correlated to an estimate of disease burden, the CAG age product scaled (CAPS). Results We found significantly reduced striatal metabolism in HDGECs, but not in striatal volume. There was a negative correlation between the CAPS and striatal metabolism, both corrected and uncorrected for the partial volume effect. The partial volume effect was largest in the smallest structures and increased the difference in metabolism between the HDGEC with high and low CAPS scores. Statistical parametric mapping confirmed the results. Conclusions A hybrid 2-[18F]FDG PET/MRI scan provides simultaneous information on structure and metabolism. Using this approach for the first time on HDGECs, we highlight the importance of partial volume effect correction in order not to underestimate the standardized uptake value and thereby the risk of overestimating the metabolic effect on the striatal structures, which potentially could bias studies determining imaging outcome measures of interventions in HDGECs and probably also symptomatic HD.
Collapse
|
12
|
Aslesh T, Yokota T. Development of Antisense Oligonucleotide Gapmers for the Treatment of Huntington's Disease. Methods Mol Biol 2021; 2176:57-67. [PMID: 32865782 DOI: 10.1007/978-1-0716-0771-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of neuromuscular and neurodegenerative diseases has been revolutionized by the advent of genetics and molecular biology to evaluate the pathogenicity, thereby providing considerable insight to develop suitable therapies. With the successful translation of antisense oligonucleotides (AOs) from in vitro into animal models and clinical practice, modifications are being continuously made to the AOs to improve the pharmacokinetics and pharmacodynamics. In order to activate RNase H-mediated cleavage of the target mRNA, as well as to increase the binding affinity and specificity, gapmer AOs are designed to have a phosphorothioate (PS) backbone flanked with the modified AOs on both sides. Antisense-mediated knockdown of mutated huntingtin is a promising therapeutic approach for Huntington's disease (HD), a devastating disorder affecting the motor and cognitive abilities. This chapter focuses on the modified gapmer AOs for the treatment of HD.
Collapse
Affiliation(s)
- Tejal Aslesh
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Baidya F, Bohra M, Datta A, Sarmah D, Shah B, Jagtap P, Raut S, Sarkar A, Singh U, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology 2021; 162:160-178. [PMID: 32939758 PMCID: PMC7808166 DOI: 10.1111/imm.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is characterized by gradual onset and limited availability of specific biomarkers. Apart from various aetiologies such as infection, trauma, genetic mutation, the interaction between the immune system and CNS is widely associated with neuronal damage in neurodegenerative diseases. The immune system plays a distinct role in disease progression and cellular homeostasis. It induces cellular and humoral responses, and enables tissue repair, cellular healing and clearance of cellular detritus. Aberrant and chronic activation of the immune system can damage healthy neurons. The pro-inflammatory mediators secreted by chief innate immune components, the complement system, microglia and inflammasome can augment cytotoxicity. Furthermore, these inflammatory mediators accelerate microglial activation resulting in progressive neuronal loss. Various animal studies have been carried out to unravel the complex pathology and ascertain biomarkers for these harmful diseases, but have had limited success. The present review will provide a thorough understanding of microglial activation, complement system and inflammasome generation, which lead the healthy brain towards neurodegeneration. In addition to this, possible targets of immune components to confer a strategic treatment regime for the alleviation of neuronal damage are also summarized.
Collapse
Affiliation(s)
- Falguni Baidya
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Mariya Bohra
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Aishika Datta
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Deepaneeta Sarmah
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Birva Shah
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Priya Jagtap
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Swapnil Raut
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Ankan Sarkar
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Upasna Singh
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Kiran Kalia
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Anupom Borah
- Department of Life Science and BioinformaticsAssam UniversitySilcharAssamIndia
| | - Xin Wang
- Department of NeurosurgeryBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Kunjan R. Dave
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Dileep R. Yavagal
- Department of Neurology and NeurosurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Pallab Bhattacharya
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| |
Collapse
|
14
|
Tsanov M. Neurons under genetic control: What are the next steps towards the treatment of movement disorders? Comput Struct Biotechnol J 2020; 18:3577-3589. [PMID: 33304456 PMCID: PMC7708864 DOI: 10.1016/j.csbj.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
Since the implementation of deep-brain stimulation as a therapy for movement disorders, there has been little progress in the clinical application of novel alternative treatments. Movement disorders are a group of neurological conditions, which are characterised with impairment of voluntary movement and share similar anatomical loci across the basal ganglia. The focus of the current review is on Parkinson's disease and Huntington's disease as they are the most investigated hypokinetic and hyperkinetic movement disorders, respectively. The last decade has seen enormous advances in the development of laboratory techniques that control neuronal activity. The two major ways to genetically control the neuronal function are: 1) expression of light-sensitive proteins that allow for the optogenetic control of the neuronal spiking and 2) expression or suppression of genes that control the transcription and translation of proteins. However, the translation of these methodologies from the laboratories into the clinics still faces significant challenges. The article summarizes the latest developments in optogenetics and gene therapy. Here, I compare the physiological mechanisms of established electrical deep brain stimulation to the experimental optogenetical deep brain stimulation. I compare also the advantages of DNA- and RNA-based techniques for gene therapy of familial movement disorders. I highlight the benefits and the major issues of each technique and I discuss the translational potential and clinical feasibility of optogenetic stimulation and gene expression control. The review emphasises recent technical breakthroughs that could initiate a notable leap in the treatment of movement disorders.
Collapse
Affiliation(s)
- Marian Tsanov
- School of Medicine, University College Dublin, Ireland
| |
Collapse
|
15
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
16
|
Rodrigues FB, Wild EJ. Huntington’s Disease Clinical Trials Corner: April 2020. J Huntingtons Dis 2020; 9:185-197. [DOI: 10.3233/jhd-200002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Filipe B. Rodrigues
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, UK
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, PT, Portugal
- Instituto de Medicina Molecular, Lisbon, PT, Portugal
| | - Edward J. Wild
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
17
|
Wijeratne PA, Johnson EB, Eshaghi A, Aksman L, Gregory S, Johnson HJ, Poudel GR, Mohan A, Sampaio C, Georgiou-Karistianis N, Paulsen JS, Tabrizi SJ, Scahill RI, Alexander DC. Robust Markers and Sample Sizes for Multicenter Trials of Huntington Disease. Ann Neurol 2020; 87:751-762. [PMID: 32105364 PMCID: PMC7187160 DOI: 10.1002/ana.25709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023]
Abstract
Objective The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD). We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of imaging markers robust to multicenter variation and to derive upper estimates on sample sizes for clinical trials in HD. Methods We used 1 postprocessing pipeline to retrospectively analyze T1‐weighted magnetic resonance imaging (MRI) scans from 624 participants at 3 time points, from the PREDICT‐HD, TRACK‐HD, and IMAGE‐HD studies. We used mixed effects models to adjust regional brain volumes for covariates, calculate effect sizes, and simulate possible treatment effects in disease‐affected anatomical regions. We used our model to estimate the statistical power of possible treatment effects for anatomical regions and clinical markers. Results We identified a set of common anatomical regions that have similarly large standardized effect sizes (>0.5) between healthy control and premanifest HD (PreHD) groups. These included subcortical, white matter, and cortical regions and nonventricular cerebrospinal fluid (CSF). We also observed a consistent spatial distribution of effect size by region across the whole brain. We found that multicenter studies were necessary to capture treatment effect variance; for a 20% treatment effect, power of >80% was achieved for the caudate (n = 661), pallidum (n = 687), and nonventricular CSF (n = 939), and, crucially, these imaging markers provided greater power than standard clinical markers. Interpretation Our findings provide the first cross‐study validation of structural imaging markers in HD, supporting the use of these measurements as endpoints for both observational studies and clinical trials. ANN NEUROL 2020;87:751–762
Collapse
Affiliation(s)
- Peter A Wijeratne
- Center for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Eileanoir B Johnson
- Huntington's Disease Research Center, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Arman Eshaghi
- Center for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.,Queen Square Multiple Sclerosis Center, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Leon Aksman
- Center for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Sarah Gregory
- Huntington's Disease Research Center, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Hans J Johnson
- Departments of Neurology and Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA
| | - Govinda R Poudel
- Mary Mackillop Institute of Health Research, Australian Catholic University, Melbourne, Australia
| | | | | | - Nellie Georgiou-Karistianis
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Faculty of Nursing, Medicine, and Health Sciences, Monash University, Clayton Campus, Victoria, Australia
| | - Jane S Paulsen
- Departments of Neurology and Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Sarah J Tabrizi
- Huntington's Disease Research Center, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Rachael I Scahill
- Huntington's Disease Research Center, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | | | - Daniel C Alexander
- Center for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
18
|
Rodrigues FB, Quinn L, Wild EJ. Huntington's Disease Clinical Trials Corner: January 2019. J Huntingtons Dis 2020; 8:115-125. [PMID: 30776019 DOI: 10.3233/jhd-190001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this edition of the Huntington's Disease Clinical Trials Corner we expand on the GENERATION-HD1 and PACE-HD trials, and we list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, UK.,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, PT.,Clinical Pharmacology Unit, Instituto de Medicina Molecular, Lisbon, PT
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
19
|
Abstract
In this edition of the Huntington's Disease Clinical Trials Corner we expand on the HD-DBS and on the TRIHEP3 trials, and we list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Filipe B. Rodrigues
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Lisbon, Portugal
| | - Joaquim J. Ferreira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Lisbon, Portugal
- CNS - Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Edward J. Wild
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
20
|
Vidailhet M. Movement disorders in 2018: tackling this evil at the roots. Lancet Neurol 2018; 18:8-10. [PMID: 30563685 DOI: 10.1016/s1474-4422(18)30464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Marie Vidailhet
- Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France; Institut du Cerveau et de la Moelle épinière, UMR 1127, Inserm, UMR 7225, CNRS, Paris, France; Sorbonne Université, Paris, France.
| |
Collapse
|
21
|
Functional Magnetic Resonance Imaging in Huntington's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:381-408. [PMID: 30409260 DOI: 10.1016/bs.irn.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease is an inherited neurodegenerative condition characterized by motor dysfunction, cognitive impairment and neuropsychiatric disturbance. The effects of the underlying pathology on brain morphology are relatively well understood. Numerous structural Magnetic Resonance Imaging (MRI) studies have demonstrated macrostructural change with widespread striatal and cortical atrophy and microstructural white matter loss in premanifest and manifest HD gene carriers. However, disease effects on brain function are less well characterized. Functional MRI provides an opportunity to examine differences in brain activity either in response to a particular task or in the brain at rest. There is increasing evidence that HD gene carriers exhibit altered activation patterns and functional connectivity between brain regions in response to the neurodegenerative process. Here we review the growing literature in this area and critically evaluate the utility of this imaging modality.
Collapse
|