1
|
Merino M, González S, Tronch MC, Sánchez-Sánchez AV, Clares MP, García-España A, García-España E, Mullor JL. Small Molecule Pytren-4QMn Metal Complex Slows down Huntington's Disease Progression in Male zQ175 Transgenic Mice. Int J Mol Sci 2023; 24:15153. [PMID: 37894844 PMCID: PMC10607077 DOI: 10.3390/ijms242015153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder considered a rare disease with a prevalence of 5.7 per 100,000 people. It is caused by an autosomal dominant mutation consisting of expansions of trinucleotide repeats that translate into poly-glutamine enlarged mutant huntingtin proteins (mHTT), which are particularly deleterious in brain tissues. Since there is no cure for this progressive fatal disease, searches for new therapeutic approaches are much needed. The small molecule pytren-4QMn (4QMn), a highly water-soluble mimic of the enzyme superoxide dismutase, has shown in vivo beneficial anti-inflammatory activity in mice and was able to remove mHTT deposits in a C. elegans model of HD. In this study, we assessed 4QMn therapeutic potential in zQ175 neo-deleted knock-in mice, a model of HD that closely mimics the heterozygosity, genetic injury, and progressive nature of the human disease. We provide evidence that 4QMn has good acute and chronic tolerability, and can cross the blood-brain barrier, and in male, but not female, zQ175 mice moderately ameliorate HD-altered gene expression, mHtt aggregation, and HD disease phenotype. Our data highlight the importance of considering sex-specific differences when testing new therapies using animal models and postulate 4QMn as a potential novel type of small water-soluble metal complex that could be worth further investigating for its therapeutic potential in HD, as well as in other polyglutamine diseases.
Collapse
Affiliation(s)
- Marián Merino
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Sonia González
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Mª Carmen Tronch
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Ana Virginia Sánchez-Sánchez
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Mª Paz Clares
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain; (M.P.C.); (E.G.-E.)
| | - Antonio García-España
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Enrique García-España
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain; (M.P.C.); (E.G.-E.)
| | - José L. Mullor
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| |
Collapse
|
2
|
Keller CG, Shin Y, Monteys AM, Renaud N, Beibel M, Teider N, Peters T, Faller T, St-Cyr S, Knehr J, Roma G, Reyes A, Hild M, Lukashev D, Theil D, Dales N, Cha JH, Borowsky B, Dolmetsch R, Davidson BL, Sivasankaran R. An orally available, brain penetrant, small molecule lowers huntingtin levels by enhancing pseudoexon inclusion. Nat Commun 2022; 13:1150. [PMID: 35241644 PMCID: PMC8894458 DOI: 10.1038/s41467-022-28653-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Huntington's Disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the huntingtin (HTT) gene. The mutant HTT (mHTT) protein causes neuronal dysfunction, causing progressive motor, cognitive and behavioral abnormalities. Current treatments for HD only alleviate symptoms, but cerebral spinal fluid (CSF) or central nervous system (CNS) delivery of antisense oligonucleotides (ASOs) or virus vectors expressing RNA-induced silencing (RNAi) moieties designed to induce mHTT mRNA lowering have progressed to clinical trials. Here, we present an alternative disease modifying therapy the orally available, brain penetrant small molecule branaplam. By promoting inclusion of a pseudoexon in the primary transcript, branaplam lowers mHTT protein levels in HD patient cells, in an HD mouse model and in blood samples from Spinal Muscular Atrophy (SMA) Type I patients dosed orally for SMA (NCT02268552). Our work paves the way for evaluating branaplam's utility as an HD therapy, leveraging small molecule splicing modulators to reduce expression of dominant disease genes by driving pseudoexon inclusion.
Collapse
Affiliation(s)
| | - Youngah Shin
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Alex Mas Monteys
- The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Renaud
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natalia Teider
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Thomas Peters
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Faller
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sophie St-Cyr
- The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Judith Knehr
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alejandro Reyes
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marc Hild
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Diethilde Theil
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natalie Dales
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jang-Ho Cha
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | - Beverly L Davidson
- The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|