Khan SM, Khan AA, Farooq O. Selection of Features and Classifiers for EMG-EEG-Based Upper Limb Assistive Devices-A Review.
IEEE Rev Biomed Eng 2019;
13:248-260. [PMID:
31689209 DOI:
10.1109/rbme.2019.2950897]
[Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bio-signals are distinctive factors in the design of human-machine interface, essentially useful for prosthesis, orthosis, and exoskeletons. Despite the progress in the analysis of pattern recognition based devices; the acceptance of these devices is still questionable. One reason is the lack of information to identify the possible combinations of features and classifiers. Besides; there is also a need for optimal selection of various sensors for sensations such as touch, force, texture, along with EMGs/EEGs. This article reviews the two bio-signal techniques, named as electromyography and electroencephalography. The details of the features and the classifiers used in the data processing for upper limb assist devices are summarised here. Various features and their sets are surveyed and different classifiers for feature sets are discussed on the basis of the classification rate. The review was carried out on the basis of the last 10-12 years of published research in this area. This article also outlines the influence of modality of EMGs and EEGs with other sensors on classifications. Also, other bio-signals used in upper limb devices and future aspects are considered.
Collapse