1
|
A Semi-Automatic Semantic Consistency-Checking Method for Learning Ontology from Relational Database. INFORMATION 2021. [DOI: 10.3390/info12050188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To tackle the issues of semantic collision and inconsistencies between ontologies and the original data model while learning ontology from relational database (RDB), a semi-automatic semantic consistency checking method based on graph intermediate representation and model checking is presented. Initially, the W-Graph, as an intermediate model between databases and ontologies, was utilized to formalize the semantic correspondences between databases and ontologies, which were then transformed into the Kripke structure and eventually encoded with the SMV program. Meanwhile, description logics (DLs) were employed to formalize the semantic specifications of the learned ontologies, since the OWL DL showed good semantic compatibility and the DLs presented an excellent expressivity. Thereafter, the specifications were converted into a computer tree logic (CTL) formula to improve machine readability. Furthermore, the task of checking semantic consistency could be converted into a global model checking problem that could be solved automatically by the symbolic model checker. Moreover, an example is given to demonstrate the specific process of formalizing and checking the semantic consistency between learned ontologies and RDB, and a verification experiment was conducted to verify the feasibility of the presented method. The results showed that the presented method could correctly check and identify the different kinds of inconsistencies between learned ontologies and its original data model.
Collapse
|
2
|
Abstract
The ontology sparse vector learning algorithm is essentially a dimensionality reduction trick, i.e., the key components in the p-dimensional vector are taken out, and the remaining components are set to zero, so as to obtain the key information in a certain ontology application background. In the early stage of ontology data processing, the goal of the algorithm is to find the location of key components through the learning of some ontology sample points, if the relevant concepts and structure information of each ontology vertex with p-dimensional vectors are expressed. The ontology sparse vector itself contains a certain structure, such as the symmetry between components and the binding relationship between certain components, and the algorithm can also be used to dig out the correlation and decisive components between the components. In this paper, the graph structure is used to express these components and their interrelationships, and the optimal solution is obtained by using spectral graph theory and graph optimization techniques. The essence of the proposed ontology learning algorithm is to find the decisive vertices in the graph Gβ. Finally, two experiments show that the given ontology learning algorithm is effective in similarity calculation and ontology mapping in some specific engineering fields.
Collapse
|
3
|
Gao W, Chen Y. Approximation analysis of ontology learning algorithm in linear combination setting. JOURNAL OF CLOUD COMPUTING: ADVANCES, SYSTEMS AND APPLICATIONS 2020. [DOI: 10.1186/s13677-020-00173-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|