1
|
Franulic F, Salech F, Rivas D, Duque G. Deciphering Osteosarcopenia through the hallmarks of aging. Mech Ageing Dev 2024; 222:111997. [PMID: 39396681 DOI: 10.1016/j.mad.2024.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Osteosarcopenia is a major driver of functional loss and a risk factor for falls, fractures, disability and mortality in older adults, urgently requiring the development of effective interventions to address it. The hallmarks of aging provide a theoretical and practical framework that allows for the structured organization of current knowledge and the planning of new development lines. This article comprehensively reviews the currently available literature on the role of the hallmarks of aging in the development of osteosarcopenia, thereby offering a panoramic view of the state of the art and knowledge gaps in this field.
Collapse
Affiliation(s)
- Francisca Franulic
- Sección de Geriatría, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Felipe Salech
- Sección de Geriatría, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Ageing and Quality of life Nucleus, INTA, Universidad de Chile, Santiago de Chile, Chile; Centre FONDAP for Aging, Brain and Metabolism GERO, Universidad de Chile, Santiago de Chile, Chile
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Hollands P, Ovokaitys T. New Concepts in the Manipulation of the Aging Process. Curr Stem Cell Res Ther 2024; 19:178-184. [PMID: 36752298 DOI: 10.2174/1574888x18666230208102635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 02/09/2023]
Abstract
This review explores the current concepts in aging and then goes on to describe a novel, ground-breaking technology which will change the way we think about and manage aging. The foundation of the review is based on the work carried out on the QiLaser activation of human Very Small Embryonic Like (hVSEL) pluripotent stem cells in autologous Platelet Rich Plasma (PRP), known as the Qigeneration Procedure. The application of this technology in anti-aging technology is discussed with an emphasis on epigenetic changes during aging focusing on DNA methylation.
Collapse
Affiliation(s)
- Peter Hollands
- CTO Qigenix, 6125 Paseo Del Norte, Suite 140, Carlsbad, CA 92008, USA
| | - Todd Ovokaitys
- CEO Qigenix, 6125 Paseo Del Norte, Suite 140, Carlsbad, CA 92008, USA
| |
Collapse
|
3
|
Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci Rep 2023; 43:232343. [PMID: 36538023 PMCID: PMC9829652 DOI: 10.1042/bsr20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle possesses a high plasticity and a remarkable regenerative capacity that relies mainly on muscle stem cells (MuSCs). Molecular and cellular components of the MuSC niche, such as immune cells, play key roles to coordinate MuSC function and to orchestrate muscle regeneration. An abnormal infiltration of immune cells and/or imbalance of pro- and anti-inflammatory cytokines could lead to MuSC dysfunctions that could have long lasting effects on muscle function. Different genetic variants were shown to cause muscular dystrophies that intrinsically compromise MuSC function and/or disturb their microenvironment leading to impaired muscle regeneration that contributes to disease progression. Alternatively, many acquired myopathies caused by comorbidities (e.g., cardiopulmonary or kidney diseases), chronic inflammation/infection, or side effects of different drugs can also perturb MuSC function and their microenvironment. The goal of this review is to comprehensively summarize the current knowledge on acquired myopathies and their impact on MuSC function. We further describe potential therapeutic strategies to restore MuSC regenerative capacity.
Collapse
|
4
|
Larson AA, Shams AS, McMillin SL, Sullivan BP, Vue C, Roloff ZA, Batchelor E, Kyba M, Lowe DA. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am J Physiol Cell Physiol 2022; 322:C1123-C1137. [PMID: 35442828 PMCID: PMC9169829 DOI: 10.1152/ajpcell.00429.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/17/2022] [Indexed: 12/22/2022]
Abstract
The size of the satellite cell pool is reduced in estradiol (E2)-deficient female mice and humans. Here, we use a combination of in vivo and in vitro approaches to identify mechanisms, whereby E2 deficiency impairs satellite cell maintenance. By measuring satellite cell numbers in mice at several early time points postovariectomy (Ovx), we determine that satellite cell numbers decline by 33% between 10 and 14 days post-Ovx in tibialis anterior and gastrocnemius muscles. At 14 days post-Ovx, we demonstrate that satellite cells have a reduced propensity to transition from G0/G1 to S and G2/M phases, compared with cells from ovary-intact mice, associated with changes in two key satellite cell cycle regulators, ccna2 and p16INK4a. Further, freshly isolated satellite cells treated with E2 in vitro have 62% greater cell proliferation and require less time to complete the first division. Using clonal and differentiation assays, we measured 69% larger satellite cell colonies and enhanced satellite cell-derived myoblast differentiation with E2 treatment compared with vehicle-treated cells. Together, these results identify a novel mechanism for preservation of the satellite cell pool by E2 via promotion of satellite cell cycling.
Collapse
Affiliation(s)
- Alexie A Larson
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Ahmed S Shams
- Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shawna L McMillin
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Brian P Sullivan
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Cha Vue
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Zachery A Roloff
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Michael Kyba
- Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
5
|
Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S. Exosomes in Ageing and Motor Neurone Disease: Biogenesis, Uptake Mechanisms, Modifications in Disease and Uses in the Development of Biomarkers and Therapeutics. Cells 2021; 10:2930. [PMID: 34831153 PMCID: PMC8616058 DOI: 10.3390/cells10112930] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Intercellular communication between neurons and their surrounding cells occurs through the secretion of soluble molecules or release of vesicles such as exosomes into the extracellular space, participating in brain homeostasis. Under neuro-degenerative conditions associated with ageing, such as amyotrophic lateral sclerosis (ALS), Alzheimer's or Parkinson's disease, exosomes are suspected to propagate toxic proteins. The topic of this review is the role of exosomes in ageing conditions and more specifically in ALS. Our current understanding of exosomes and exosome-related mechanisms is first summarized in a general sense, including their biogenesis and secretion, heterogeneity, cellular interaction and intracellular fate. Their role in the Central Nervous System (CNS) and ageing of the neuromotor system is then considered in the context of exosome-induced signaling. The review then focuses on exosomes in age-associated neurodegenerative disease. The role of exosomes in ALS is highlighted, and their use as potential biomarkers to diagnose and prognose ALS is presented. The therapeutic implications of exosomes for ALS are considered, whether as delivery vehicles, neurotoxic targets or as corrective drugs in and of themselves. A diverse set of mechanisms underpin the functional roles, both confirmed and potential, of exosomes, generally in ageing and specifically in motor neurone disease. Aspects of their contents, biogenesis, uptake and modifications offer many plausible routes towards the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| | - Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Trust, University College London, London WC1N 1EH, UK
| | - Julie Dumonceaux
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Trust, University College London, London WC1N 1EH, UK
| | - William John Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| |
Collapse
|
6
|
Le Gall L, Anakor E, Connolly O, Vijayakumar UG, Duddy WJ, Duguez S. Molecular and Cellular Mechanisms Affected in ALS. J Pers Med 2020; 10:E101. [PMID: 32854276 PMCID: PMC7564998 DOI: 10.3390/jpm10030101] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal late-onset condition characterized by the loss of upper and lower motor neurons. Mutations in more than 30 genes are associated to the disease, but these explain only ~20% of cases. The molecular functions of these genes implicate a wide range of cellular processes in ALS pathology, a cohesive understanding of which may provide clues to common molecular mechanisms across both familial (inherited) and sporadic cases and could be key to the development of effective therapeutic approaches. Here, the different pathways that have been investigated in ALS are summarized, discussing in detail: mitochondrial dysfunction, oxidative stress, axonal transport dysregulation, glutamate excitotoxicity, endosomal and vesicular transport impairment, impaired protein homeostasis, and aberrant RNA metabolism. This review considers the mechanistic roles of ALS-associated genes in pathology, viewed through the prism of shared molecular pathways.
Collapse
Affiliation(s)
- Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Owen Connolly
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Udaya Geetha Vijayakumar
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - William J. Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| |
Collapse
|
7
|
Le Gall L, Ouandaogo ZG, Anakor E, Connolly O, Butler Browne G, Laine J, Duddy W, Duguez S. Optimized method for extraction of exosomes from human primary muscle cells. Skelet Muscle 2020; 10:20. [PMID: 32641118 PMCID: PMC7341622 DOI: 10.1186/s13395-020-00238-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/22/2020] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle is increasingly considered an endocrine organ secreting myokines and extracellular vesicles (exosomes and microvesicles), which can affect physiological changes with an impact on different pathological conditions, including regenerative processes, aging, and myopathies. Primary human myoblasts are an essential tool to study the muscle vesicle secretome. Since their differentiation in conditioned media does not induce any signs of cell death or cell stress, artefactual effects from those processes are unlikely. However, adult human primary myoblasts senesce in long-term tissue culture, so a major technical challenge is posed by the need to avoid artefactual effects resulting from pre-senescent changes. Since these cells should be studied within a strictly controlled pre-senescent division count (<21 divisions), and yields of myoblasts per muscle biopsy are low, it is difficult or impossible to amplify sufficiently large cell numbers (some 250 × 106 myoblasts) to obtain sufficient conditioned medium for the standard ultracentrifugation approach to exosome isolation. Thus, an optimized strategy to extract and study secretory muscle vesicles is needed. In this study, conditions are optimized for the in vitro cultivation of human myoblasts, and the quality and yield of exosomes extracted using an ultracentrifugation protocol are compared with a modified polymer-based precipitation strategy combined with extra washing steps. Both vesicle extraction methods successfully enriched exosomes, as vesicles were positive for CD63, CD82, CD81, floated at identical density (1.15-1.27 g.ml−1), and exhibited similar size and cup-shape using electron microscopy and NanoSight tracking. However, the modified polymer-based precipitation was a more efficient strategy to extract exosomes, allowing their extraction in sufficient quantities to explore their content or to isolate a specific subpopulation, while requiring >30 times fewer differentiated myoblasts than what is required for the ultracentrifugation method. In addition, exosomes could still be integrated into recipient cells such as human myotubes or iPSC-derived motor neurons. Modified polymer-based precipitation combined with extra washing steps optimizes exosome yield from a lower number of differentiated myoblasts and less conditioned medium, avoiding senescence and allowing the execution of multiple experiments without exhausting the proliferative capacity of the myoblasts.
Collapse
Affiliation(s)
- Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK
| | | | - Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK
| | - Owen Connolly
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK
| | | | - Jeanne Laine
- Centre for Research in Myology, INSERM UMRS_974, Sorbonne Université, Paris, France
| | - William Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK.
| |
Collapse
|
8
|
Blackburn DM, Lazure F, Corchado AH, Perkins TJ, Najafabadi HS, Soleimani VD. High-resolution genome-wide expression analysis of single myofibers using SMART-Seq. J Biol Chem 2019; 294:20097-20108. [PMID: 31753917 DOI: 10.1074/jbc.ra119.011506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue. Individual myofibers that make up muscle tissue exhibit variation in their metabolic and contractile properties. Although biochemical and histological assays are available to study myofiber heterogeneity, efficient methods to analyze the whole transcriptome of individual myofibers are lacking. Here, we report on a single-myofiber RNA-sequencing (smfRNA-Seq) approach to analyze the whole transcriptome of individual myofibers by combining single-fiber isolation with Switching Mechanism at 5' end of RNA Template (SMART) technology. Using smfRNA-Seq, we first determined the genes that are expressed in the whole muscle, including in nonmyogenic cells. We also analyzed the differences in the transcriptome of myofibers from young and old mice to validate the effectiveness of this new method. Our results suggest that aging leads to significant changes in the expression of metabolic genes, such as Nos1, and structural genes, such as Myl1, in myofibers. We conclude that smfRNA-Seq is a powerful tool to study developmental, disease-related, and age-related changes in the gene expression profile of skeletal muscle.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Aldo H Corchado
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada .,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
9
|
|
10
|
Skeletal muscle fibrosis: an overview. Cell Tissue Res 2018; 375:575-588. [DOI: 10.1007/s00441-018-2955-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
|
11
|
Heterocellular molecular contacts in the mammalian stem cell niche. Eur J Cell Biol 2018; 97:442-461. [PMID: 30025618 DOI: 10.1016/j.ejcb.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Adult tissue homeostasis and repair relies on prompt and appropriate intervention by tissue-specific adult stem cells (SCs). SCs have the ability to self-renew; upon appropriate stimulation, they proliferate and give rise to specialized cells. An array of environmental signals is important for maintenance of the SC pool and SC survival, behavior, and fate. Within this special microenvironment, commonly known as the stem cell niche (SCN), SC behavior and fate are regulated by soluble molecules and direct molecular contacts via adhesion molecules providing connections to local supporting cells and the extracellular matrix. Besides the extensively discussed array of soluble molecules, the expression of adhesion molecules and molecular contacts is another fundamental mechanism regulating niche occupancy and SC mobilization upon activation. Some adhesion molecules are differentially expressed and have tissue-specific consequences, likely reflecting the structural differences in niche composition and design, especially the presence or absence of a stromal counterpart. However, the distribution and identity of intercellular molecular contacts for adhesion and adhesion-mediated signaling within stromal and non-stromal SCN have not been thoroughly studied. This review highlights common details or significant differences in cell-to-cell contacts within representative stromal and non-stromal niches that could unveil new standpoints for stem cell biology and therapy.
Collapse
|
12
|
|
13
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia. Biol Chem 2018; 399:421-436. [DOI: 10.1515/hsz-2017-0331] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Sarcopenia is a well-known geriatric syndrome that has been endorsed over the years as a biomarker allowing for the discrimination, at a clinical level, of biological from chronological age. Multiple candidate mechanisms have been linked to muscle degeneration during sarcopenia. Among them, there is wide consensus on the central role played by the loss of mitochondrial integrity in myocytes, secondary to dysfunctional quality control mechanisms. Indeed, mitochondria establish direct or indirect contacts with other cellular components (e.g. endoplasmic reticulum, peroxisomes, lysosomes/vacuoles) as well as the extracellular environment through the release of several biomolecules. The functional implications of these interactions in the context of muscle physiology and sarcopenia are not yet fully appreciated and represent a promising area of investigation. Here, we present an overview of recent findings concerning the interrelation between mitochondrial quality control processes, inflammation and the metabolic regulation of muscle mass in the pathogenesis of sarcopenia highlighting those pathways that may be exploited for developing preventive and therapeutic interventions against muscle aging.
Collapse
|
15
|
Scicchitano BM, Pelosi L, Sica G, Musarò A. The physiopathologic role of oxidative stress in skeletal muscle. Mech Ageing Dev 2017; 170:37-44. [PMID: 28851603 DOI: 10.1016/j.mad.2017.08.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/14/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
Muscle senescence is a complex mechanism that is usually associated with a decrease in mass, strength and velocity of contraction. This state, known as sarcopenia, is a multifactorial process and it may be the consequence of several events, including accumulation of oxidative stress. The role of oxidative stress in the physiopathology of skeletal muscle is quite complex. Transiently increased levels of oxidative stress might reflect a potentially health promoting process, while an uncontrolled accumulation might have pathological implication. The physiopathological role of oxidative stress on skeletal muscle, its involvement in aging-induced sarcopenia, and potential countermeasures will be discussed.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Institute of Histology and Embryology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Italy.
| |
Collapse
|
16
|
Bigot A, Duddy WJ, Ouandaogo ZG, Negroni E, Mariot V, Ghimbovschi S, Harmon B, Wielgosik A, Loiseau C, Devaney J, Dumonceaux J, Butler-Browne G, Mouly V, Duguez S. Age-Associated Methylation Suppresses SPRY1, Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle. Cell Rep 2015; 13:1172-1182. [PMID: 26526994 DOI: 10.1016/j.celrep.2015.09.067] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 11/26/2022] Open
Abstract
The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated methylation in humans inhibits the replenishment of the muscle stem cell pool, contributing to a decreased regenerative response in old age. We further show that aging does not affect muscle stem cell senescence in humans.
Collapse
Affiliation(s)
- Anne Bigot
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - William J Duddy
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Zamalou G Ouandaogo
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Elisa Negroni
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Virginie Mariot
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Svetlana Ghimbovschi
- Genomics, Proteomics, and Bioinformatics (GPB) Core of the Intellectual and Developmental Disabilities Research Center (IDDRC), Children's National Medical Center, Washington, DC 20010, USA
| | - Brennan Harmon
- Genomics, Proteomics, and Bioinformatics (GPB) Core of the Intellectual and Developmental Disabilities Research Center (IDDRC), Children's National Medical Center, Washington, DC 20010, USA
| | - Aurore Wielgosik
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Camille Loiseau
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France; Sorbonne Universités, UPMC University of Paris 06, INSERM, UMR-S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris 13, France
| | - Joe Devaney
- Genomics, Proteomics, and Bioinformatics (GPB) Core of the Intellectual and Developmental Disabilities Research Center (IDDRC), Children's National Medical Center, Washington, DC 20010, USA
| | - Julie Dumonceaux
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Gillian Butler-Browne
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France.
| | - Stéphanie Duguez
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France.
| |
Collapse
|