1
|
Fujise K, Okubo M, Abe T, Yamada H, Nishino I, Noguchi S, Takei K, Takeda T. Mutant BIN1-Dynamin 2 complexes dysregulate membrane remodeling in the pathogenesis of centronuclear myopathy. J Biol Chem 2021; 296:100077. [PMID: 33187981 PMCID: PMC7949082 DOI: 10.1074/jbc.ra120.015184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/08/2022] Open
Abstract
Membrane remodeling is required for dynamic cellular processes such as cell division, polarization, and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling. BIN1 and DNM2, which encode a BAR domain protein BIN1 and dynamin 2, respectively, have been reported to be causative genes of centronuclear myopathy (CNM), a hereditary degenerative disease of skeletal muscle, and deformation of T-tubules is often observed in the CNM patients. However, it remains unclear how BIN1 and dynamin 2 are implicated in T-tubule biogenesis and how mutations in these molecules cause CNM to develop. Here, using an in cellulo reconstitution assay, we demonstrate that dynamin 2 is required for stabilization of membranous structures equivalent to T-tubules. GTPase activity of wild-type dynamin 2 is suppressed through interaction with BIN1, whereas that of the disease-associated mutant dynamin 2 remains active due to lack of the BIN1-mediated regulation, thus causing aberrant membrane remodeling. Finally, we show that in cellulo aberrant membrane remodeling by mutant dynamin 2 variants is correlated with their enhanced membrane fission activities, and the results can explain severity of the symptoms in patients. Thus, this study provides molecular insights into dysregulated membrane remodeling triggering the pathogenesis of DNM2-related CNM.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Blotting, Western
- Dynamin II/genetics
- Dynamin II/metabolism
- HEK293 Cells
- Humans
- Immunoprecipitation
- Microscopy, Fluorescence
- Muscle, Skeletal/metabolism
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Nanotubes/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Kenshiro Fujise
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mariko Okubo
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Tadashi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Yamada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ichizo Nishino
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Satoru Noguchi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Kohji Takei
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Tetsuya Takeda
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
2
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Congenital muscular dystrophies and congenital myopathies are a heterogeneous group of disorders resulting in hypotonia, muscle weakness, and dystrophic or myopathic features on muscle biopsy. This article summarizes the clinical and genetic aspects of these disorders. RECENT FINDINGS Historically, diagnoses of congenital muscular dystrophy and congenital myopathy have been made by clinical features and histopathology; however, recent advances in genetics have changed diagnostic practice by relying more heavily on genetic findings. This article reviews the clinical and genetic features of the most common congenital muscular dystrophies including laminin subunit alpha 2 (LAMA2)-related (merosin deficient), collagen VI-related, and α-dystroglycan-related congenital muscular dystrophies and reviews the most common congenital myopathies including nemaline rod, core, and centronuclear myopathies. With the increasing accessibility of genetic testing, the number of genes found to be associated with these disorders has increased dramatically. A wide spectrum of severity and onset (from birth to adulthood) exist across all subtypes. Progression and other features are variable depending on the subtype and severity of the specific genetic mutation. SUMMARY Congenital muscular dystrophy and congenital myopathy are increasingly recognized disorders. A growing appreciation for the breadth of phenotypic variability and overlap between established subtypes has challenged long-standing phenotypic and histopathologic classifications of these disorders but has driven a greater understanding of pathogenesis and opened the door to the development of novel treatments.
Collapse
|
4
|
Abstract
The congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies. The mode of inheritance can be autosomal recessive, autosomal dominant or X-linked. Both dominant and recessive mutations in the same gene can cause a similar disease phenotype, and the same clinical phenotype can also be caused by mutations in different genes. Clear genotype-phenotype correlations are few and far between.
Collapse
Affiliation(s)
- Katarina Pelin
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Zanoteli E. Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Kouwenberg C, Bohm J, Erasmus C, van Balken I, Vos S, Kusters B, Kamsteeg EJ, Biancalana V, Koch C, Dondaine N, Laporte J, Voermans N. Dominant Centronuclear Myopathy with Early Childhood Onset due to a Novel Mutation in BIN1. J Neuromuscul Dis 2017; 4:349-355. [DOI: 10.3233/jnd-170238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Carlyn Kouwenberg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud university medical centre, Nijmegen, The Netherlands
| | - Johann Bohm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg Illkirch, Strasbourg, France
| | - Corrie Erasmus
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Irene van Balken
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud university medical centre, Nijmegen, The Netherlands
| | - Sandra Vos
- Department of Medical Psychology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Valerie Biancalana
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg Illkirch, Strasbourg, France
- Laboratoire Diagnostic Génétique, Faculté de Médecine – CHRU, Strasbourg, France
| | - Catherine Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg Illkirch, Strasbourg, France
| | - Nicolas Dondaine
- Laboratoire Diagnostic Génétique, Faculté de Médecine – CHRU, Strasbourg, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg Illkirch, Strasbourg, France
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud university medical centre, Nijmegen, The Netherlands
| |
Collapse
|