1
|
Singanamalla B, Kesavan S, Aggarwal D, Chatterjee D, Urtizberea A, Suthar R. Marked Facial Weakness, Ptosis, and Hanging Jaw: A Case with RYR1 -Related Congenital Centronuclear Myopathy. J Pediatr Genet 2023; 12:318-324. [PMID: 38162159 PMCID: PMC10756716 DOI: 10.1055/s-0041-1731683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/22/2021] [Indexed: 10/20/2022]
Abstract
Congenital myopathies are an expanding spectrum of neuromuscular disorders with early infantile or childhood onset hypotonia and slowly or nonprogressive skeletal muscle weakness. RYR1 -related myopathies are the most common and frequently diagnosed class of congenital myopathies. Malignant hyperthermia susceptibility and central core disease are autosomal dominant or de novo RYR1 disorder, whereas multiminicore, congenital fiber type disproportion and centronuclear myopathy are autosomal recessive RYR1 disorders. The presence of ptosis, ophthalmoparesis, facial, and proximal muscles weakness, with the presence of dusty cores and multiple internal nuclei on muscle biopsy are clues to the diagnosis. We describe an 18-year-old male, who presented with early infantile onset ptosis, ophthalmoplegia, myopathic facies, hanging lower jaw, and proximal muscle weakness confirmed as an RYR1 -related congenital centronuclear myopathy on genetic analysis and muscle biopsy.
Collapse
Affiliation(s)
- Bhanudeep Singanamalla
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shivan Kesavan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Debajyoti Chatterjee
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Chang X, Wei R, Wei C, Liu J, Qin L, Yan H, Ma Y, Wang Z, Xiong H. Correlation of Phenotype–Genotype and Protein Structure in RYR1-Related Myopathy. Front Neurol 2022; 13:870285. [PMID: 35693006 PMCID: PMC9178086 DOI: 10.3389/fneur.2022.870285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Next generation sequencing results in an explosive identification of rare variants of RYR1, making the correlation between phenotype and genotype complicated. We analyzed the data of 33 patients with RYR1-related myopathy, attempting to elucidate correlations between phenotype, genotype, and protein structure of RyR1. Methods Clinical, histopathologic, and genetic data were evaluated, and variants were mapped to the cryo-EM RyR1 structure. The three-dimensional structure of the variant on RyR1 was analyzed. Results The clinical spectrum was highly variable regardless of the mode of inheritance. Recessive variations were associated with more severe feeding problems and respiratory insufficiency in infancy (p < 0.05). Forty pathogenic and likely pathogenic variations were identified, and 14 of them were novel. Missense was the most common variation type regardless of inheritance mode. Arginine (15/45) was the most frequently involved residue. All but one dominant variation clustered in Pore forming and pVSD domains, while recessive variations enriched in Bsol (7/25) and SPRYs (6/25) domains. Analysis of the spatial structure of variants showed that dominant variants may impact RyR1 mainly by breaking down hydrogen or electrovalent bonds (10/21); recessive variants located in different domains may impact the function of RyR1 through different pathways. Variants located in RyR1 coupling sites (PY1&2 and the outermost of Bsol) may cause the most severe clinical manifestation. Conclusion Clinical diversity of RYR1-related myopathy was impacted by the inheritance mode, variation type, and variant location. Dominant and recessive variants have different sensitive domains impacting the function of RyR1 through different pathways.
Collapse
Affiliation(s)
- Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Xingzhi Chang
| | - Risheng Wei
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Peking University, Beijing, China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jieyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lun Qin
- Department of Rehabilitation Medicine, Peking University First Hospital, Beijing, China
| | - Hui Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
de Souza A. Adult-onset selective quadriceps femoris weakness in RYR1-related myopathy. Neurol Sci 2022; 43:3453-3455. [DOI: 10.1007/s10072-022-05964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
4
|
Cotta A, Souza LS, Carvalho E, Feitosa LN, Cunha A, Navarro MM, Valicek J, Menezes MM, Neves SVN, Xavier-Neto R, Vargas AP, Takata RI, Paim JF, Vainzof M. Central Core Disease: Facial Weakness Differentiating Biallelic from Monoallelic Forms. Genes (Basel) 2022; 13:genes13050760. [PMID: 35627144 PMCID: PMC9141459 DOI: 10.3390/genes13050760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Central Core Disease (CCD) is a genetic neuromuscular disorder characterized by the presence of cores in muscle biopsy. The inheritance has been described as predominantly autosomal dominant (AD), and the disease may present as severe neonatal or mild adult forms. Here we report clinical and molecular data on a large cohort of Brazilian CCD patients, including a retrospective clinical analysis and molecular screening for RYR1 variants using Next-Generation Sequencing (NGS). We analyzed 27 patients from 19 unrelated families: four families (11 patients) with autosomal dominant inheritance (AD), two families (3 patients) with autosomal recessive (AR), and 13 sporadic cases. Biallelic RYR1 variants were found in six families (two AR and four sporadic cases) of the 14 molecularly analyzed families (~43%), suggesting a higher frequency of AR inheritance than expected. None of these cases presented a severe phenotype. Facial weakness was more common in biallelic than in monoallelic patients (p = 0.0043) and might be a marker for AR forms. NGS is highly effective for the identification of RYR1 variants in CCD patients, allowing the discovery of a higher proportion of AR cases with biallelic mutations. These data have important implications for the genetic counseling of the families.
Collapse
Affiliation(s)
- Ana Cotta
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Lucas Santos Souza
- Human Genome and Stem Cells Research Center, Genetics and Evolutionary Biology, IBUSP, University of São Paulo, R. do Matao, 106, Cidade Universitária, Sao Paulo 05508-900, SP, Brazil; (L.S.S.); (L.N.F.)
| | - Elmano Carvalho
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Leticia Nogueira Feitosa
- Human Genome and Stem Cells Research Center, Genetics and Evolutionary Biology, IBUSP, University of São Paulo, R. do Matao, 106, Cidade Universitária, Sao Paulo 05508-900, SP, Brazil; (L.S.S.); (L.N.F.)
| | - Antonio Cunha
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Monica Machado Navarro
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Jaquelin Valicek
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Miriam Melo Menezes
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Simone Vilela Nunes Neves
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Rafael Xavier-Neto
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Antonio Pedro Vargas
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Reinaldo Issao Takata
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Julia Filardi Paim
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Mariz Vainzof
- Human Genome and Stem Cells Research Center, Genetics and Evolutionary Biology, IBUSP, University of São Paulo, R. do Matao, 106, Cidade Universitária, Sao Paulo 05508-900, SP, Brazil; (L.S.S.); (L.N.F.)
- Correspondence:
| |
Collapse
|
5
|
Zhang Y, Yan H, Liu J, Yan H, Ma Y, Wei C, Wang Z, Xiong H, Chang X. Clinical and genetic features of infancy-onset congenital myopathies from a Chinese paediatric centre. BMC Pediatr 2022; 22:65. [PMID: 35081925 PMCID: PMC8790871 DOI: 10.1186/s12887-021-03024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital myopathies are a group of rare neuromuscular diseases characterized by specific histopathological features. The relationship between the pathologies and the genetic causes is complex, and the prevalence of myopathy-causing genes varies among patients from different ethnic groups. The aim of the present study was to characterize congenital myopathies with infancy onset among patients registered at our institution. METHOD This retrospective study enrolled 56 patients based on the pathological and/or genetic diagnosis. Clinical, histopathological and genetic features of the patients were analysed with long-term follow-up. RESULTS Twenty-six out of 43 patients who received next-generation sequencing had genetic confirmation, and RYR1 variations (12/26) were the most prevalent. Eighteen novel variations were identified in 6 disease-causing genes, including RYR1, NEB, TTN, TNNT1, DNM2 and ACTA1. Nemaline myopathy (17/55) was the most common histopathology. The onset ages ranged from birth to 1 year. Thirty-one patients were followed for 3.83 ± 3.05 years (ranging from 3 months to 11 years). No patient died before 1 year. Two patients died at 5 years and 8 years respectively. The motor abilities were stable or improved in 23 patients and deteriorated in 6 patients. Ten (10/31) patients developed respiratory involvement, and 9 patients (9/31) had mildly abnormal electrocardiograms and/or echocardiograms. CONCLUSION The severity of congenital myopathies in the neonatal/infantile period may vary in patients from different ethnic groups. More concern should be given to cardiac monitoring in patients with congenital myopathies even in those with static courses.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China.,Department of Paediatrics, Peking University International Hospital, 102206, Beijing, PR China
| | - Hui Yan
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Jieyu Liu
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Huifang Yan
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, 100034, Beijing, PR China
| | - Cuijie Wei
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 100034, Beijing, PR China
| | - Hui Xiong
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Xingzhi Chang
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China.
| |
Collapse
|
6
|
Mauri E, Piga D, Govoni A, Brusa R, Pagliarani S, Ripolone M, Dilena R, Cinnante C, Sciacco M, Cassandrini D, Nigro V, Bresolin N, Corti S, Comi GP, Magri F. Early Findings in Neonatal Cases of RYR1-Related Congenital Myopathies. Front Neurol 2021; 12:664618. [PMID: 34262519 PMCID: PMC8273285 DOI: 10.3389/fneur.2021.664618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/21/2021] [Indexed: 12/03/2022] Open
Abstract
Ryanodine receptor type 1-related congenital myopathies are the most represented subgroup among congenital myopathies (CMs), typically presenting a central core or multiminicore muscle histopathology and high clinical heterogeneity. We evaluated a cohort of patients affected with Ryanodine receptor type 1-related congenital myopathy (RYR1-RCM), focusing on four patients who showed a severe congenital phenotype and underwent a comprehensive characterization at few months of life. To date there are few reports on precocious instrumental assessment. In two out of the four patients, a muscle biopsy was performed in the first days of life (day 5 and 37, respectively) and electron microscopy was carried out in two patients detecting typical features of congenital myopathy. Two patients underwent brain MRI in the first months of life (15 days and 2 months, respectively), one also a fetal brain MRI. In three children electromyography was performed in the first week of life and neurogenic signs were excluded. Muscle MRI obtained within the first years of life showed a typical pattern of RYR1-CM. The diagnosis was confirmed through genetic analysis in three out of four cases using Next Generation Sequencing (NGS) panels. The development of a correct and rapid diagnosis is a priority and may lead to prompt medical management and helps optimize inclusion in future clinical trials.
Collapse
Affiliation(s)
- Eleonora Mauri
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Piga
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Brusa
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Pagliarani
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Istituto di Ricerca e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Robertino Dilena
- Neuropathophysiology Unit, Istituto di Ricerca e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cinnante
- Neuroradiology Unit, Istituto di Ricerca e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare Diseases Unit, Istituto di Ricerca e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Denise Cassandrini
- Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico Fondazione Stella Maris, Pisa, Italy
| | - Vincenzo Nigro
- "Luigi Vanvitelli" University and Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Nereo Bresolin
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Istituto di Ricerca e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW We will give an overview of neuromuscular disorders that can be linked with malignant hyperthermia or malignant hyperthermia-like reactions, and suggest an appropriate approach to interpret the risks. RECENT FINDINGS An increasing number of neuromuscular phenotypes have been linked to malignant hyperthermia susceptibility (MHS). This is for an important part due to the highly variable phenotype associated with mutations in the ryanodine receptor 1 gene (RYR1), the gene most frequently associated with MHS. A RYR1-mutation or a clinical RYR1-phenotype does not automatically translate in MHS, but precautions should be taken nonetheless. In addition, several other genes and phenotypes are now considered to be associated with MHS. In contrast, several neuromuscular diseases that were long thought to be linked to MHS are now known to cause malignant hyperthermia-like reactions instead of malignant hyperthermia. This is highly relevant as not only the given preoperative advice differs, but also acute treatment. SUMMARY This review provides a summary of current evidence linking certain neuromuscular diseases to malignant hyperthermia or malignant hyperthermia-like reactions. We provide a guide for the clinician, to determine which patients are at risk of malignant hyperthermia or malignant hyperthermia-like reactions perioperatively, and to ensure adequate treatment in case such a severe acute complication occurs.
Collapse
|
8
|
RYR1 Sequence Variants in Myopathies: Expression and Functional Studies in Two Families. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7638946. [PMID: 31165076 PMCID: PMC6500691 DOI: 10.1155/2019/7638946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.
Collapse
|
9
|
Rinnenthal JL, Dittmayer C, Irlbacher K, Wacker I, Schröder R, Goebel HH, Butori C, Villa L, Sacconi S, Stenzel W. New variant of necklace fibres display peculiar lysosomal structures and mitophagy. Neuromuscul Disord 2018; 28:846-856. [PMID: 30149909 DOI: 10.1016/j.nmd.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/20/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022]
Abstract
Here, we describe a new variant of necklace fibres with specific myopathological features that have not been described thus far. They were observed in two patients, from two independent families with identical DNM2 (dynamin 2) mutation (c.1106 G > A (p.Arg369Gln)), displaying mildly heterogeneous clinical phenotypes. The variant is characterized by lysosomal inclusions, arranged in a necklace pattern, containing homogenous material, devoid of myonuclei. The so-called necklace region has a certain characteristic distance to the sarcolemma. Electron microscopy, including three dimensional reconstructions of serial section images highlights their ultrastructural properties and relation to neighbouring organelles. This new pattern is compared to the previously reported patterns in muscle biopsies containing necklace fibres associated with MTM1- and DNM2-mutations.
Collapse
Affiliation(s)
- Jan Leo Rinnenthal
- Department of Pathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Kerstin Irlbacher
- Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Irene Wacker
- Cryo EM, CAM, Universität Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Rasmus Schröder
- Cryo EM, BioQuant, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Catherine Butori
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Luisa Villa
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS Department, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, CHU Nice, 30, Avenue de la Voie Romaine, France
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|