1
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
2
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Schiemann AH, Roesl C, Pollock N, Langton E, Bulger T, Stowell KM. Identification and Functional Analysis of RYR1 Variants in a Family with a Suspected Myopathy and Associated Malignant Hyperthermia. J Neuromuscul Dis 2020; 7:51-60. [PMID: 31903994 DOI: 10.3233/jnd-190430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The ryanodine receptor 1 (RyR1) is a major skeletal muscle calcium release channel located in the sarcoplasmic reticulum and involved in excitation-contraction coupling. Variants in the gene encoding RyR1 have been linked to a range of neuromuscular disorders including myopathies and malignant hyperthermia (MH). OBJECTIVE We have identified three RYR1 variants (c.1983 G>A, p.Trp661*; c.7025A>G, p.Asn2342Ser and c.2447 C>T, p.Pro816Leu) in a family with a suspected myopathy and associated malignant hyperthermia susceptibility. We used calcium release assays to functionally characterise these variants in a recombinant system. METHODS Site-directed mutagenesis was used to introduce each variant separately into the human RYR1 cDNA. HEK293-T cells were transfected with the recombinant constructs and calcium release assays were carried out using 4-chloro-m-cresol (4-CmC) as the RyR1 agonist to investigate the functional consequences of each variant. RESULTS RYR1 c.1983 G>A, p.Trp661* resulted in a non-functional channel, c.7025A>G, p.Asn2342Ser in a hypersensitive channel and c.2447 C>T, p.Pro816Leu in a hypersensitive channel at higher concentrations of 4-CmC. CONCLUSIONS The p.Trp661* RYR1 variant should be considered as a risk factor for myopathies. The p.Asn2342Ser RYR1 variant, when expressed as a compound heterozygote with a nonsense mutation on the second allele, is likely to result in MH-susceptibility. The role of the p.Pro816Leu variant in MH remains unclear.
Collapse
Affiliation(s)
- Anja H Schiemann
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand
| | - Cornelia Roesl
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand.,Present address: LifeArc, Nine, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Manawatu, New Zealand.,Now retired
| | | | - Terasa Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Manawatu, New Zealand
| | - Kathryn M Stowell
- School of Fundamental Sciences, Massey University, Manawatu, New Zealand
| |
Collapse
|
4
|
Fusto A, Moyle LA, Gilbert PM, Pegoraro E. Cored in the act: the use of models to understand core myopathies. Dis Model Mech 2019; 12:dmm041368. [PMID: 31874912 PMCID: PMC6955215 DOI: 10.1242/dmm.041368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The core myopathies are a group of congenital myopathies with variable clinical expression - ranging from early-onset skeletal-muscle weakness to later-onset disease of variable severity - that are identified by characteristic 'core-like' lesions in myofibers and the presence of hypothonia and slowly or rather non-progressive muscle weakness. The genetic causes are diverse; central core disease is most often caused by mutations in ryanodine receptor 1 (RYR1), whereas multi-minicore disease is linked to pathogenic variants of several genes, including selenoprotein N (SELENON), RYR1 and titin (TTN). Understanding the mechanisms that drive core development and muscle weakness remains challenging due to the diversity of the excitation-contraction coupling (ECC) proteins involved and the differential effects of mutations across proteins. Because of this, the use of representative models expressing a mature ECC apparatus is crucial. Animal models have facilitated the identification of disease progression mechanisms for some mutations and have provided evidence to help explain genotype-phenotype correlations. However, many unanswered questions remain about the common and divergent pathological mechanisms that drive disease progression, and these mechanisms need to be understood in order to identify therapeutic targets. Several new transgenic animals have been described recently, expanding the spectrum of core myopathy models, including mice with patient-specific mutations. Furthermore, recent developments in 3D tissue engineering are expected to enable the study of core myopathy disease progression and the effects of potential therapeutic interventions in the context of human cells. In this Review, we summarize the current landscape of core myopathy models, and assess the hurdles and opportunities of future modeling strategies.
Collapse
Affiliation(s)
- Aurora Fusto
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| |
Collapse
|
5
|
Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, Chrismer IC, Zhang X, Cosgrove MM, Kuo A, Vasavada R, Jain MS, Waite M, Rajapakse D, Witherspoon JW, Wistow G, Meilleur KG. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol 2018; 265:2506-2524. [PMID: 30155738 PMCID: PMC6182665 DOI: 10.1007/s00415-018-9033-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/01/2023]
Abstract
Variants in the skeletal muscle ryanodine receptor 1 gene (RYR1) result in a spectrum of RYR1-related disorders. Presentation during infancy is typical and ranges from delayed motor milestones and proximal muscle weakness to severe respiratory impairment and ophthalmoplegia. We aimed to elucidate correlations between genotype, protein structure and clinical phenotype in this rare disease population. Genetic and clinical data from 47 affected individuals were analyzed and variants mapped to the cryo-EM RyR1 structure. Comparisons of clinical severity, motor and respiratory function and symptomatology were made according to the mode of inheritance and affected RyR1 structural domain(s). Overall, 49 RYR1 variants were identified in 47 cases (dominant/de novo, n = 35; recessive, n = 12). Three variants were previously unreported. In recessive cases, facial weakness, neonatal hypotonia, ophthalmoplegia/paresis, ptosis, and scapular winging were more frequently observed than in dominant/de novo cases (all, p < 0.05). Both dominant/de novo and recessive cases exhibited core myopathy histopathology. Clinically severe cases were typically recessive or had variants localized to the RyR1 cytosolic shell domain. Motor deficits were most apparent in the MFM-32 standing and transfers dimension, [median (IQR) 85.4 (18.8)% of maximum score] and recessive cases exhibited significantly greater overall motor function impairment compared to dominant/de novo cases [79.7 (18.8)% vs. 87.5 (17.7)% of maximum score, p = 0.03]. Variant mapping revealed patterns of clinical severity across RyR1 domains, including a structural plane of interest within the RyR1 cytosolic shell, in which 84% of variants affected the bridging solenoid. We have corroborated genotype-phenotype correlations and identified RyR1 regions that may be especially sensitive to structural modification.
Collapse
Affiliation(s)
- Joshua J Todd
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA.
| | - Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Carolyn Allen
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Monique S Shelton
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Xuemin Zhang
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Mary M Cosgrove
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Anna Kuo
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Ruhi Vasavada
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Waite
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| |
Collapse
|