1
|
Coratti G, Pane M, Brogna C, D'Amico A, Pegoraro E, Bello L, Sansone VA, Albamonte E, Ferraroli E, Mazzone ES, Fanelli L, Messina S, Sframeli M, Catteruccia M, Cicala G, Capasso A, Ricci M, Frosini S, De Luca G, Rolle E, De Sanctis R, Forcina N, Norcia G, Passamano L, Scutifero M, Gardani A, Pini A, Monaco G, D'Angelo MG, Leone D, Zanin R, Vita GL, Panicucci C, Bruno C, Mongini T, Ricci F, Berardinelli A, Battini R, Masson R, Baranello G, Dosi C, Bertini E, Nigro V, Politano L, Mercuri E. Gain and loss of upper limb abilities in Duchenne muscular dystrophy patients: A 24-month study. Neuromuscul Disord 2024; 34:75-82. [PMID: 38157655 DOI: 10.1016/j.nmd.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular condition characterized by muscle weakness. The Performance of upper limb (PUL) test is designed to evaluate upper limb function in DMD patients across three domains. The aim of this study is to identify frequently lost or gained PUL 2.0 abilities at distinct functional stages in DMD patients. This retrospective study analyzed prospectively collected data on 24-month PUL 2.0 changes related to ambulatory function. Ambulant patients were categorized based on initial 6MWT distance, non-ambulant patients by time since ambulation loss. Each PUL 2.0 item was classified as shift up, no change, or shift down. The study's cohort incuded 274 patients, with 626 paired evaluations at the 24-month mark. Among these, 55.1 % had activity loss, while 29.1 % had gains. Ambulant patients showed the lowest loss rates, mainly in the shoulder domain. The highest loss rate was in the shoulder domain in the transitioning subgroup and in elbow and distal domains in the non-ambulant patients. Younger ambulant patients demonstrated multiple gains, whereas in the other functional subgroups there were fewer gains, mostly tied to singular activities. Our findings highlight divergent upper limb domain progression, partly linked to functional status and baseline function.
Collapse
Affiliation(s)
- Giorgia Coratti
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marika Pane
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Brogna
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Valeria A Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | - Emilio Albamonte
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | | | | | - Lavinia Fanelli
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Sframeli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gianpaolo Cicala
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Capasso
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Ricci
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Frosini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Giacomo De Luca
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrica Rolle
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Roberto De Sanctis
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Forcina
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Giulia Norcia
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Luigia Passamano
- Cardiomiology and Medical Genetics, Luigi Vanvitelli University Hospital, Naples, Italy
| | - Marianna Scutifero
- Cardiomiology and Medical Genetics, Luigi Vanvitelli University Hospital, Naples, Italy
| | - Alice Gardani
- Child and Adolescence Neurological Unit, National Neurological Institute Casimiro Mondino Foundation, IRCCS, IRCCS Mondino Foundation, Pavia, Italy
| | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | - Giulia Monaco
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | | | - Daniela Leone
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Riccardo Zanin
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gian Luca Vita
- Unit of Neurology, IRCCS Centro Neurolesi Bonino-Pulejo - P.O. Piemonte, Messina, Italy
| | - Chiara Panicucci
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health-DINOGMI, Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini IRCCS, University of Genova, Genova, Italy
| | - Claudio Bruno
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health-DINOGMI, Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini IRCCS, University of Genova, Genova, Italy
| | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Federica Ricci
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Angela Berardinelli
- Child and Adolescence Neurological Unit, National Neurological Institute Casimiro Mondino Foundation, IRCCS, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Dosi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, Luigi Vanvitelli and Telethon Institute of Genetics and Medicine, University of Campania, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Luigi Vanvitelli University Hospital, Naples, Italy
| | - Eugenio Mercuri
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
2
|
Quach S, Veitch A, Zaccagnini M, West A, Nonoyama ML. Underrepresentation of Respiratory Therapists as Experts in Delphi Studies on Respiratory Practices and Research Priorities. Respir Care 2022; 67:1609-1632. [PMID: 36442987 PMCID: PMC9994035 DOI: 10.4187/respcare.10012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Delphi survey techniques are a common consensus method used to collect feedback from an expert panel to inform practices, establish guidelines, and identify research priorities. Collecting respiratory therapists' (RT) expertise and experiences as part of consensus-building methodologies is one way to ensure that they align with RT practices and to better influence respiratory care practice. This narrative review aimed to report the RT representation in expert panels of Delphi studies focused on respiratory therapy practices and research priorities. The research question that guided this review is: to what extent are RTs included as expert participants among published Delphi studies relate to respiratory therapy and research topics? We conducted a structured search of the literature and identified 23 papers that reported Delphi studies related to respiratory care practices and 15 that reported on respiratory-related research priorities. Delphi studies that focused on reporting consensus on respiratory care practices included the following: (1) mechanical ventilation, (2) high-flow nasal cannula therapy, (3) COVID-19 respiratory management, (4) home oxygen therapy, (5) cardiopulmonary monitoring, and (6) disease-specific guidelines. Delphi studies that focused on establishing respiratory research priorities included the following: (1) theory and practice-orientated knowledge gaps, and (2) priority research topics for empirical investigation. The results of this review suggest that RTs were rarely included as expert participants and, when involved, were minimally represented (5% to 33%). Given RTs' diverse and relevant experience in respiratory care, incorporating their perspectives to inform future education, respiratory care practices, and research priorities would allow evidence to better align with knowledge gaps deemed important for the respiratory therapy profession.
Collapse
Affiliation(s)
- Shirley Quach
- School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
- Respiratory Therapy Department, Hospital of Sick Children, Toronto, Ontario, Canada
| | - Alanna Veitch
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
| | - Marco Zaccagnini
- School of Physical and Occupational Therapy, McGill University, Montréal, Quebec, Canada
- Department Respiratory Therapy, McGill University Health Centre, Montréal, Quebec, Canada
| | - Andrew West
- Canadian Society of Respiratory Therapists, Saint John, New Brunswick, Canada
| | - Mika L Nonoyama
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada.
- Respiratory Therapy Department, Hospital of Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Abdulhady H, Sakr HM, Elsayed NS, El-Sobky TA, Fahmy N, Saadawy AM, Elsedfy H. Ambulatory Duchenne muscular dystrophy children: cross-sectional correlation between function, quantitative muscle ultrasound and MRI. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2022; 41:1-14. [PMID: 35465338 PMCID: PMC9004336 DOI: 10.36185/2532-1900-063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 01/24/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive genetic muscle disease. Quantitative muscle ultrasound (US), muscle MRI, and functional tools are important to delineate characteristics of muscle involvement. We aimed to establish correlations between clinical/functional and above-named imaging tools respecting their diagnostic and prognostic role in DMD children. A cross-sectional retrospective study of 27 steroid-naive, ambulant male children/adolescents with genetically-confirmed DMD (mean age, 8.8 ± 3.3 years). Functional performance was assessed using motor function measure (MFM) which assess standing/transfer (D1), proximal (D2) and distal (D3) motor function, and six-minute walk test (6MWT). Imaging evaluation included quantitative muscle MRI which measured muscle fat content in a specific location of right rectus femoris by mDixon sequence. Quantitative muscle US measured right rectus femoris muscle brightness in standardized US image as an indicator of muscle fat content. We found a highly significant positive correlation between the mean MFM total score and 6MWT (R = 0.537, p = 0.007), and a highly significant negative correlation between fat content by muscle US and MFM total score (R = -0.603, p = 0.006) and its D1 subscore (R =-0.712, p = 0.001), and a significant negative correlation between fat content by US and 6MWT (R = -0.529, p = 0.02), and a significant positive correlation between muscle fat content by mDixon MRI and patient's age (R = 0.617, p = 0.01). Quantitative muscle US correlates significantly with clinical/functional assessment tools as MFM and 6MWT, and augments their role in disease-tracking of DMD. Quantitative muscle US has the potential to act as a substitute to functional assessment tools.
Collapse
Affiliation(s)
- Hala Abdulhady
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hossam M. Sakr
- Department of Diagnostic and Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt,Correspondence Hossam M. Sakr Department of Diagnostic and Interventional Radiology and Molecular Imaging Faculty of Medicine, Ain Shams University, Abbassia square, 11381 Cairo, Egypt. E-mail:
| | - Nermine S. Elsayed
- Department of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer A. El-Sobky
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagia Fahmy
- Neuromuscular Unit, Department of Neuropsychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr M. Saadawy
- Department of Diagnostic and Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba Elsedfy
- Department of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Yu HK, Liu X, Pan M, Chen JW, Liu C, Wu Y, Li ZB, Wang HY. Performance of Passive Muscle Stiffness in Diagnosis and Assessment of Disease Progression in Duchenne Muscular Dystrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:414-421. [PMID: 34893358 DOI: 10.1016/j.ultrasmedbio.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the performance of passive muscle stiffness in diagnosing and assessing disease progression in Duchenne muscular dystrophy (DMD). Boys with DMD and age-matched controls were recruited. Shear wave elastography (SWE) videos were collected by performing dynamic stretching of the gastrocnemius medius (GM). At ankle angles from plantar flexion (PF) 30° to dorsiflexion (DF) 20°, the shear modulus of the GM was measured for each 10° of ankle movement. Shear modulus at each ankle angle was compared between the DMD and control group. Correlation between passive muscle stiffness and motor function grading was also analyzed. A total of 26 patients with DMD and 20 healthy boys were enrolled. At multiple stretch levels, passive muscle stiffness of the GM was significantly higher in patients with DMD than in those in the control group (all p values <0.05). The shear modulus of GM at an ankle angle of DF 10° had the largest area under the receiver operating characteristic curve in differentiating DMD patients from normal subjects (AUC = 0.902, 95% confidence interval: 0.814-0.990). Motor function grading was a significant determinant of passive muscle stiffness at an ankle angle of DF 10° (B = 21.409, t = 3.372, p = 0.003). Passive muscle stiffness may potentially serve as a useful non-invasive tool to monitor disease progression in DMD patients.
Collapse
Affiliation(s)
- Hong-Kui Yu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Liu
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Jin-Wei Chen
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Bin Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Ying Wang
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|