1
|
Delgado-Chaves FM, Jennings MJ, Atalaia A, Wolff J, Horvath R, Mamdouh ZM, Baumbach J, Baumbach L. Transforming literature screening: The emerging role of large language models in systematic reviews. Proc Natl Acad Sci U S A 2025; 122:e2411962122. [PMID: 39761403 PMCID: PMC11745399 DOI: 10.1073/pnas.2411962122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Systematic reviews (SR) synthesize evidence-based medical literature, but they involve labor-intensive manual article screening. Large language models (LLMs) can select relevant literature, but their quality and efficacy are still being determined compared to humans. We evaluated the overlap between title- and abstract-based selected articles of 18 different LLMs and human-selected articles for three SR. In the three SRs, 185/4,662, 122/1,741, and 45/66 articles have been selected and considered for full-text screening by two independent reviewers. Due to technical variations and the inability of the LLMs to classify all records, the LLM's considered sample sizes were smaller. However, on average, the 18 LLMs classified 4,294 (min 4,130; max 4,329), 1,539 (min 1,449; max 1,574), and 27 (min 22; max 37) of the titles and abstracts correctly as either included or excluded for the three SRs, respectively. Additional analysis revealed that the definitions of the inclusion criteria and conceptual designs significantly influenced the LLM performances. In conclusion, LLMs can reduce one reviewer´s workload between 33% and 93% during title and abstract screening. However, the exact formulation of the inclusion and exclusion criteria should be refined beforehand for ideal support of the LLMs.
Collapse
Affiliation(s)
- Fernando M. Delgado-Chaves
- Institute for Computational Systems Biology, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg22761, Germany
| | - Matthew J. Jennings
- Center for Motor Neuron Biology and Diseases, Department of Neurology Columbia University, New York, NY10032
| | - Antonio Atalaia
- Inserm Center of Research in Myology, Neuro-Myology Service G.H. Pitié-Salpêtrière, Sorbonne Université, Paris75013, France
| | - Justus Wolff
- Syte – Strategy Institute for DigitalHealth, Hamburg20354, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0QQ, United Kingdom
| | - Zeinab M. Mamdouh
- Department of Pharmacology and Personalised Medicine, Maastricht University, Maastricht6229 ER, The Netherlands
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig44519, Egypt
| | - Jan Baumbach
- Institute for Computational Systems Biology, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg22761, Germany
- Department of Mathematics and Computer Science, Institute for Mathematics and Computer Science, University of Southern Denmark, Odense5230, Denmark
| | - Linda Baumbach
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg20246, Germany
- Center for Bioinformatics Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg22761, Germany
| |
Collapse
|
2
|
Pion E, Bonne G, Atalaia A, Salort-Campana E, Gorokhova S, Attarian S, Cossée M, Krahn M. [The clinical actionability of genes: A concept for rare diseases and the first objective assessment for myopathies]. Med Sci (Paris) 2024; 40 Hors série n° 1:6-8. [PMID: 39555868 DOI: 10.1051/medsci/2024128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
High-throughput sequencing has introduced the concept of "actionable genes". These genes are linked to diseases for which specific treatments or care exist. Accurate genetic diagnosis is therefore crucial for initiating interventions that can prevent or delay the progression of rare diseases. High-throughput sequencing has considerably increased the capacities of genetic analyses, but it has also led to an increase in requests for analyses, lengthening the time taken to obtain results. It is becoming necessary to prioritize analyses, especially when "actionable genes" are suspected to be implicated. In the case of myopathies, a French national study has identified 63 actionable genes, implicated in diseases for which a targeted treatment and/or priority care can be initiated, thereby improving the patient's prognosis. Despite advances, many rare diseases remain without specific treatments, underlining the continuing importance of research and innovation in medical genetics.
Collapse
Affiliation(s)
- Emmanuelle Pion
- Filnemus, laboratoire de génétique moléculaire, CHU Montpellier, Montpellier, France
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Antonio Atalaia
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Emmanuelle Salort-Campana
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Svetlana Gorokhova
- Aix-Marseille Université, Inserm, Marseille Medical Genetics, U1251 ; Département de Génétique Médicale, Hôpital Timone Enfants, APHM, Marseille, France
| | - Shahram Attarian
- Centre de référence des maladies neuromusculaires et de la SLA, CHU La Timone Filnemus, Euro-NMD, AIX-Marseille Université
| | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, CHU Montpellier, PhyMedExp, Université de Montpellier, Inserm, CNRS, Montpellier
| | - Martin Krahn
- Aix-Marseille Université, Inserm, Marseille Medical Genetics, U1251 ; Département de Génétique Médicale, Hôpital Timone Enfants, APHM, Marseille, France
| |
Collapse
|
3
|
Moss KR, Mi R, Kawaguchi R, Ehmsen JT, Shi Q, Vargas PI, Mukherjee-Clavin B, Lee G, Höke A. hESC- and hiPSC-derived Schwann cells are molecularly comparable and functionally equivalent. iScience 2024; 27:109855. [PMID: 38770143 PMCID: PMC11103364 DOI: 10.1016/j.isci.2024.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/11/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Establishing robust models of human myelinating Schwann cells is critical for studying peripheral nerve injury and disease. Stem cell differentiation has emerged as a key human cell model and disease motivating development of Schwann cell differentiation protocols. Human embryonic stem cells (hESCs) are considered the ideal pluripotent cell but ethical concerns regarding their use have propelled the popularity of human induced pluripotent stem cells (hiPSCs). Given that the equivalence of hESCs and hiPSCs remains controversial, we sought to compare the molecular and functional equivalence of hESC- and hiPSC-derived Schwann cells generated with our previously reported protocol. We identified only modest transcriptome differences by RNA sequencing and insignificant proteome differences by antibody array. Additionally, both cell types comparably improved nerve regeneration and function in a chronic denervation and regeneration animal model. Our findings demonstrate that Schwann cells derived from hESCs and hiPSCs with our protocol are molecularly comparable and functionally equivalent.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruifa Mi
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Riki Kawaguchi
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jeffrey T. Ehmsen
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiang Shi
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paula I. Vargas
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bipasha Mukherjee-Clavin
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Carmody LC, Gargano MA, Toro S, Vasilevsky NA, Adam MP, Blau H, Chan LE, Gomez-Andres D, Horvath R, Kraus ML, Ladewig MS, Lewis-Smith D, Lochmüller H, Matentzoglu NA, Munoz-Torres MC, Schuetz C, Seitz B, Similuk MN, Sparks TN, Strauss T, Swietlik EM, Thompson R, Zhang XA, Mungall CJ, Haendel MA, Robinson PN. The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease. MED 2023; 4:913-927.e3. [PMID: 37963467 PMCID: PMC10842845 DOI: 10.1016/j.medj.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.
Collapse
Affiliation(s)
- Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Sabrina Toro
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Margaret P Adam
- University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - David Gomez-Andres
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Megan L Kraus
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Markus S Ladewig
- Department of Ophthalmology, Klinikum Saarbrücken, Saarbrücken, Germany
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottowa, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada; Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico, Barcelona, Spain
| | | | | | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg, Saar, Germany
| | - Morgan N Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Teresa N Sparks
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timmy Strauss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge CB2 0BB, UK
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottowa, Canada
| | | | | | | | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
5
|
Hustinx M, Shorrocks AM, Servais L. Novel Therapeutic Approaches in Inherited Neuropathies: A Systematic Review. Pharmaceutics 2023; 15:1626. [PMID: 37376074 DOI: 10.3390/pharmaceutics15061626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The management of inherited neuropathies relies mostly on the treatment of symptoms. In recent years, a better understanding of the pathogenic mechanisms that underlie neuropathies has allowed for the development of disease-modifying therapies. Here, we systematically review the therapies that have emerged in this field over the last five years. An updated list of diseases with peripheral neuropathy as a clinical feature was created based on panels of genes used clinically to diagnose inherited neuropathy. This list was extended by an analysis of published data by the authors and verified by two experts. A comprehensive search for studies of human patients suffering from one of the diseases in our list yielded 28 studies that assessed neuropathy as a primary or secondary outcome. Although the use of various scales and scoring systems made comparisons difficult, this analysis identified diseases associated with neuropathy for which approved therapies exist. An important finding is that the symptoms and/or biomarkers of neuropathies were assessed only in a minority of cases. Therefore, further investigation of treatment efficacy on neuropathies in future trials must employ objective, consistent methods such as wearable technologies, motor unit indexes, MRI or sonography imaging, or the use of blood biomarkers associated with consistent nerve conduction studies.
Collapse
Affiliation(s)
- Manon Hustinx
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3DW, UK
- Centre de Référence des Maladies Neuromusculaires, Department of Neurology, University Hospital Liège, and University of Liège, 4000 Liège, Belgium
| | - Ann-Marie Shorrocks
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3DW, UK
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3DW, UK
- Centre de Référence des Maladies Neuromusculaires, Department of Paediatrics, University Hospital Liège, and University of Liège, 4000 Liège, Belgium
| |
Collapse
|
6
|
Jennings MJ, Kagiava A, Vendredy L, Spaulding EL, Stavrou M, Hathazi D, Grüneboom A, De Winter V, Gess B, Schara U, Pogoryelova O, Lochmüller H, Borchers CH, Roos A, Burgess RW, Timmerman V, Kleopa KA, Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022; 145:3999-4015. [PMID: 35148379 PMCID: PMC9679171 DOI: 10.1093/brain/awac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexia Kagiava
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Marina Stavrou
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Dortmund, Germany
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Burkhard Gess
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Ulrike Schara
- Centre for Neuromuscular Disorders in Children, University of Duisburg-Essen, Essen, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andreas Roos
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Kleopas A Kleopa
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
8
|
New Insights into the Neuromyogenic Spectrum of a Gain of Function Mutation in SPTLC1. Genes (Basel) 2022; 13:genes13050893. [PMID: 35627278 PMCID: PMC9140917 DOI: 10.3390/genes13050893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Serine palmitoyltransferase long chain base subunit 1 (SPTLC1) encodes a serine palmitoyltransferase (SPT) resident in the endoplasmic reticulum (ER). Pathological SPTLC1 variants cause a form of hereditary sensory and autonomic neuropathy (HSAN1A), and have recently been linked to unrestrained sphingoid base synthesis, causing a monogenic form of amyotrophic lateral sclerosis (ALS). It was postulated that the phenotypes associated with dominant variants in SPTLC1 may represent a continuum between neuropathy and ALS in some cases, complicated by additional symptoms such as cognitive impairment. A biochemical explanation for this clinical observation does not exist. By performing proteomic profiling on immortalized lymphoblastoid cells derived from one patient harbouring an alanine to serine amino acid substitution at position 20, we identified a subset of dysregulated proteins playing significant roles in neuronal homeostasis and might have a potential impact on the manifestation of symptoms. Notably, the identified p.(A20S)-SPTLC1 variant is associated with decrease of transcript and protein level. Moreover, we describe associated muscle pathology findings, including signs of mild inflammation accompanied by dysregulation of respective markers on both the protein and transcript levels. By performing coherent anti-Stokes Raman scattering microscopy, presence of protein and lipid aggregates could be excluded.
Collapse
|
9
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
10
|
Manta A, Spendiff S, Lochmüller H, Thompson R. Targeted Therapies for Metabolic Myopathies Related to Glycogen Storage and Lipid Metabolism: a Systematic Review and Steps Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:401-417. [PMID: 33720849 PMCID: PMC8203237 DOI: 10.3233/jnd-200621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Metabolic myopathies are a heterogenous group of muscle diseases typically characterized by exercise intolerance, myalgia and progressive muscle weakness. Effective treatments for some of these diseases are available, but while our understanding of the pathogenesis of metabolic myopathies related to glycogen storage, lipid metabolism and β-oxidation is well established, evidence linking treatments with the precise causative genetic defect is lacking. OBJECTIVE The objective of this study was to collate all published evidence on pharmacological therapies for the aforementioned metabolic myopathies and link this to the genetic mutation in a format amenable to databasing for further computational use in line with the principles of the "treatabolome" project. METHODS A systematic literature review was conducted to retrieve all levels of evidence examining the therapeutic efficacy of pharmacological treatments on metabolic myopathies related to glycogen storage and lipid metabolism. A key inclusion criterion was the availability of the genetic variant of the treated patients in order to link treatment outcome with the genetic defect. RESULTS Of the 1,085 articles initially identified, 268 full-text articles were assessed for eligibility, of which 87 were carried over into the final data extraction. The most studied metabolic myopathies were Pompe disease (45 articles), multiple acyl-CoA dehydrogenase deficiency related to mutations in the ETFDH gene (15 articles) and systemic primary carnitine deficiency (8 articles). The most studied therapeutic management strategies for these diseases were enzyme replacement therapy, riboflavin, and carnitine supplementation, respectively. CONCLUSIONS This systematic review provides evidence for treatments of metabolic myopathies linked with the genetic defect in a computationally accessible format suitable for databasing in the treatabolome system, which will enable clinicians to acquire evidence on appropriate therapeutic options for their patient at the time of diagnosis.
Collapse
Affiliation(s)
- A. Manta
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - S. Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - H. Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center –University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Division of Neurology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - R. Thompson
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
11
|
Tiet MY, Lin Z, Gao F, Jennings MJ, Horvath R. Targeted Therapies for Leigh Syndrome: Systematic Review and Steps Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:885-897. [PMID: 34308912 PMCID: PMC8673543 DOI: 10.3233/jnd-210715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Leigh syndrome (LS) is the most frequent paediatric clinical presentation of mitochondrial disease. The clinical phenotype of LS is highly heterogeneous. Though historically the treatment for LS is largely supportive, new treatments are on the horizon. Due to the rarity of LS, large-scale interventional studies are scarce, limiting dissemination of information of therapeutic options to the wider scientific and clinical community. OBJECTIVE We conducted a systematic review of pharmacological therapies of LS following the guidelines for FAIR-compliant datasets. METHODS We searched for interventional studies within Clincialtrials.gov and European Clinical trials databases. Randomised controlled trials, observational studies, case reports and case series formed part of a wider MEDLINE search. RESULTS Of the 1,193 studies initially identified, 157 met our inclusion criteria, of which 104 were carried over into our final analysis. Treatments for LS included very few interventional trials using EPI-743 and cysteamine bitartrate. Wider literature searches identified case series and reports of treatments repleting glutathione stores, reduction of oxidative stress and restoration of oxidative phosphorylation. CONCLUSIONS Though interventional randomised controlled trials have begun for LS, the majority of evidence remains in case reports and case series for a number of treatable genes, encoding cofactors or transporter proteins of the mitochondria. Our findings will form part of the international expert-led Solve-RD efforts to assist clinicians initiating treatments in patients with treatable variants of LS.
Collapse
Affiliation(s)
- May Yung Tiet
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Zhiyuan Lin
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Fei Gao
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Matthew James Jennings
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|