1
|
Huang L, Kondo Y, Cao L, Han J, Li T, Zuo B, Yang F, Li Y, Ma Z, Bai X, Jiang M, Ruan C, Xia L. Novel GNE missense variants impair de novo sialylation and cause defective angiogenesis in the developing brain in mice. Blood Adv 2024; 8:991-1001. [PMID: 38237079 PMCID: PMC10879683 DOI: 10.1182/bloodadvances.2023011490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
ABSTRACT Glucosamine (UDP-N-acetyl)-2-epimerase and N-acetylmannosamine (ManNAc) kinase (GNE) is a cytosolic enzyme in de novo sialic acid biosynthesis. Congenital deficiency of GNE causes an autosomal recessive genetic disorder associated with hereditary inclusion body myopathy and macrothrombocytopenia. Here, we report a pediatric patient with severe macrothrombocytopenia carrying 2 novel GNE missense variants, c.1781G>A (p.Cys594Tyr, hereafter, C594Y) and c.2204C>G (p.Pro735Arg, hereafter, P735R). To investigate the biological significance of these variants in vivo, we generated a mouse model carrying the P735R mutation. Mice with homozygous P735R mutations exhibited cerebral hemorrhages as early as embryonic day 11 (E11), which subsequently progressed to large hemorrhages in the brain and spinal cord, and died between E11.5 and E12.5. Defective angiogenesis such as distended vascular sprouts were found in neural tissues and embryonic megakaryocytes were abnormally accumulated in the perineural vascular plexus in mutant mouse embryos. Furthermore, our in vitro experiments indicated that both C594Y and P735R are loss-of-function mutations with respect to de novo sialic acid biosynthesis. Overall, this study reveals a novel role for GNE-mediated de novo sialic acid biosynthesis in mouse embryonic angiogenesis.
Collapse
Affiliation(s)
- Lulu Huang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuji Kondo
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| | - Lijuan Cao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyi Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zuo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| |
Collapse
|
2
|
Harazi A, Yakovlev L, Ilouz N, Selke P, Horstkorte R, Fellig Y, Lahat O, Lifschytz T, Abudi N, Abramovitch R, Argov Z, Mitrani-Rosenbaum S. Induced Muscle and Liver Absence of Gne in Postnatal Mice Does Not Result in Structural or Functional Muscle Impairment. J Neuromuscul Dis 2024; 11:905-917. [PMID: 38875046 PMCID: PMC11380236 DOI: 10.3233/jnd-240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Background GNE Myopathy is a unique recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, caused by mutations in the GNE gene which is a key enzyme in the biosynthesis of sialic acid. To date, the precise pathophysiology of the disease is not well understood and no reliable animal model is available. Gne KO is embryonically lethal in mice. Objective To gain insights into GNE function in muscle, we have generated an inducible muscle Gne KO mouse. To minimize the contribution of the liver to the availability of sialic acid to muscle via the serum, we have also induced combined Gne KO in liver and muscle. Methods A mouse carrying loxp sequences flanking Gne exon3 was generated by Crispr/Cas9 and bred with a human skeletal actin (HSA) promoter driven CreERT mouse. Gne muscle knock out was induced by tamoxifen injection of the resulting homozygote GneloxpEx3loxp/HSA Cre mouse. Liver Gne KO was induced by systemic injection of AAV8 vectors carrying the Cre gene driven by the hepatic specific promoter of the thyroxine binding globulin gene. Results Characterization of these mice for a 12 months period showed no significant changes in their general behaviour, motor performance, muscle mass and structure in spite of a dramatic reduction in sialic acid content in both muscle and liver. Conclusions We conclude that post weaning lack of Gne and sialic acid in muscle and liver have no pathologic effect in adult mice. These findings could reflect a strong interspecies versatility, but also raise questions about the loss of function hypothesis in Gne Myopathy. If these findings apply to humans they have a major impact on therapeutic strategies.
Collapse
Affiliation(s)
- Avi Harazi
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lena Yakovlev
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nili Ilouz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rudiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yakov Fellig
- Department of Pathology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olga Lahat
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Nathalie Abudi
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Rinat Abramovitch
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Zohar Argov
- Department of Neurology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Zygmunt DA, Lam P, Ashbrook A, Koczwara K, Lek A, Lek M, Martin PT. Development of Assays to Measure GNE Gene Potency and Gene Replacement in Skeletal Muscle. J Neuromuscul Dis 2023; 10:797-812. [PMID: 37458043 PMCID: PMC10578240 DOI: 10.3233/jnd-221596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND GNE myopathy (GNEM) is a severe muscle disease caused by mutations in the UDP-GlcNAc-2-epimerase/ManNAc-6-kinase (GNE) gene, which encodes a bifunctional enzyme required for sialic acid (Sia) biosynthesis. OBJECTIVE To develop assays to demonstrate the potency of AAV gene therapy vectors in making Sia and to define the dose required for replacement of endogenous mouse Gne gene expression with human GNE in skeletal muscles. METHODS A MyoD-inducible Gne-deficient cell line, Lec3MyoDI, and a GNE-deficient human muscle cell line, were made and tested to define the potency of various AAV vectors to increase binding of Sia-specific lectins, including MAA and SNA. qPCR and qRT-PCR methods were used to quantify AAV biodistribution and GNE gene expression after intravenous delivery of AAV vectors designed with different promoters in wild-type mice. RESULTS Lec3 cells showed a strong deficit in MAA binding, while GNE-/-MB135 cells did not. Overexpressing GNE in Lec3 and Lec3MyoDI cells by AAV infection stimulated MAA binding in a dose-dependent manner. Use of a constitutive promoter, CMV, showed higher induction of MAA binding than use of muscle-specific promoters (MCK, MHCK7). rAAVrh74.CMV.GNE stimulated human GNE expression in muscles at levels equivalent to endogenous mouse Gne at a dose of 1×1013vg/kg, while AAVs with muscle-specific promoters required higher doses. AAV biodistribution in skeletal muscles trended higher when CMV was used as the promoter, and this correlated with increased sialylation of its viral capsid. CONCLUSIONS Lec3 and Lec3MyoDI cells work well to assay the potency of AAV vectors in making Sia. Systemic delivery of rAAVrh74.CMV.GNE can deliver GNE gene replacement to skeletal muscles at doses that do not overwhelm non-muscle tissues, suggesting that AAV vectors that drive constitutive organ expression could be used to treat GNEM.
Collapse
Affiliation(s)
- Deborah A. Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Children’s Drive, Columbus, OH, USA
| | - Patricia Lam
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Children’s Drive, Columbus, OH, USA
| | - Anna Ashbrook
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Children’s Drive, Columbus, OH, USA
| | - Katherine Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Paul T. Martin
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Children’s Drive, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Yoshioka W, Nishino I, Noguchi S. Recent advances in establishing a cure for GNE myopathy. Curr Opin Neurol 2022; 35:629-636. [PMID: 35959526 DOI: 10.1097/wco.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW GNE myopathy is a rare autosomal recessive disease caused by biallelic variants in the GNE gene, which encodes an enzyme involved in sialic acid biosynthesis. No drugs are approved for the treatment of GNE myopathy. Following proof-of-concept of sialic acid supplementation efficacy in mouse models, multiple clinical trials have been conducted. Here, we review clinical trials of sialic acid supplementation therapies and provide new insights into the additional clinical features of GNE myopathy. RECENT FINDINGS Clinical trials of sialic acid supplementation have been conducted in Europe, the USA, Japan, and South Korea. Some clinical trials of NeuAc-extended release tablets demonstrated amelioration of decline in upper extremity muscle strength; however, no significant improvement was observed in phase 3 trials in Europe and USA. A phase 2 trial of ManNAc showed slowed decline of both upper and lower extremity strength. GNE myopathy patient registries have been established in Europe and Japan, and have provided information on extramuscular manifestations such as thrombocytopenia, respiratory dysfunction, and sleep apnea syndrome. Sensitive and reliable biomarkers, and a disease-specific functional activity scale, have also been investigated. SUMMARY We discuss recent advances in establishing a GNE myopathy cure, and discuss other prospective therapeutic options, including gene therapy.
Collapse
Affiliation(s)
- Wakako Yoshioka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Ogawa-Higashi, Kodaira
- Department of Clinical Genome Analysis, Medical Genome Center, NCNP, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Ogawa-Higashi, Kodaira
- Department of Clinical Genome Analysis, Medical Genome Center, NCNP, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Ogawa-Higashi, Kodaira
| |
Collapse
|
5
|
Ilouz N, Harazi A, Guttman M, Daya A, Ruppo S, Yakovlev L, Mitrani-Rosenbaum S. In vivo and in vitro genome editing to explore GNE functions. Front Genome Ed 2022; 4:930110. [PMID: 36237634 PMCID: PMC9552322 DOI: 10.3389/fgeed.2022.930110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
GNE myopathy is an adult onset neuromuscular disorder characterized by slowly progressive distal and proximal muscle weakness, caused by missense recessive mutations in the GNE gene. Although the encoded bifunctional enzyme is well known as the limiting factor in the biosynthesis of sialic acid, no clear mechanisms have been recognized to account for the muscle atrophic pathology, and novel functions for GNE have been hypothesized. Two major issues impair studies on this protein. First, the expression of the GNE protein is minimal in human and mice muscles and there is no reliable antibody to follow up endogenous expression. Second, no reliable animal model is available for the disease and cellular models from GNE myopathy patients’ muscle cells (expressing the mutated protein) are less informative than expected. In order to broaden our knowledge on GNE functions in muscle, we have taken advantage of the CRISPR/Cas9 method for genome editing to first, add a tag to the endogenous Gne gene in mouse, allowing the determination of the spatiotemporal expression of the protein in the organism, using well established and reliable antibodies against the specific tag. In addition we have generated a Gne knock out murine muscle cell lineage to identify the events resulting from the total lack of the protein. A thorough multi-omics analysis of both cellular systems including transcriptomics, proteomics, phosphoproteomics and ubiquitination, unraveled novel pathways for Gne, in particular its involvement in cell cycle control and in the DNA damage/repair pathways. The elucidation of fundamental mechanisms of Gne in normal muscle may contribute to the identification of the disrupted functions in GNE myopathy, thus, to the definition of novel biomarkers and possible therapeutic targets for this disease.
Collapse
Affiliation(s)
- Nili Ilouz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Harazi
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Guttman
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Shmuel Ruppo
- Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Lena Yakovlev
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Stella Mitrani-Rosenbaum,
| |
Collapse
|
6
|
Mitrani-Rosenbaum S, Yakovlev L, Becker Cohen M, Argov Z, Fellig Y, Harazi A. Pre Clinical Assessment of AAVrh74.MCK.GNE Viral Vector Therapeutic Potential: Robust Activity Despite Lack of Consistent Animal Model for GNE Myopathy. J Neuromuscul Dis 2021; 9:179-192. [PMID: 34806613 PMCID: PMC8842764 DOI: 10.3233/jnd-210755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: GNE myopathy is a unique adult onset rare neuromuscular disease caused by recessive mutations in the GNE gene. The pathophysiological mechanism of this disorder is not well understood and to date, there is no available therapy for this debilitating disease. We have previously established proof of concept that AAV based gene therapy can effectively deliver the wild type human GNE into cultured muscle cells from human patients and in mice, using a CMV promoter driven human wild type GNE plasmid delivered through an adeno associated virus (AAV8) based platform. Objective: In the present study we have generated a muscle specific GNE construct, driven by the MCK promoter and packaged with the AAVrh74 serotype for efficacy evaluation in an animal model of GNE Myopathy. Methods: The viral vector was systemically delivered at 2 doses to two age groups of a Gne–/– hGNED207V Tg mouse described as a preclinical model of GNE Myopathy, and treatment was monitored for long term efficacy. Results: In spite of the fact that the full described characteristics of the preclinical model could not be reproduced, the systemic injection of the rAAVrh74.MCK.GNE viral vector resulted in a long term presence and expression of human wt GNE in the murine muscles and in some improvements of their mild phenotype. The Gne–/– hGNED207V Tg mice are smaller from birth, but cannot be differentiated from littermates by muscle function (grip strength and Rotarod) and their muscle histology is normal, even at advanced age. Conclusions: The rAAVrh74.MCK.GNE vector is a robust tool for the development of GNE Myopathy therapies that supply the intact GNE. However, there is still no reliable animal model to fully assess its efficacy since the previously developed Gne–/– hGNED207V Tg mice do not present disease characteristics.
Collapse
Affiliation(s)
- Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lena Yakovlev
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Becker Cohen
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zohar Argov
- Department of Neurology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Harazi
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|