1
|
Fidelis EM, Savall ASP, Mello JD, Quines CB, Comis-Neto AA, Sampaio TB, Denardin CC, de Ávila DS, Rosa SG, Pinton S. Purple pitanga extract (Eugenia uniflora) attenuates oxidative stress induced by MPTP. Metab Brain Dis 2023; 38:2615-2625. [PMID: 37921949 DOI: 10.1007/s11011-023-01318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2023]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used due to its specific and reproducible neurotoxic effect on the nigrostriatal system, being considered a convenient model of dopaminergic neurodegeneration to study interventions therapeutics. The purple pitanga (Eugenia uniflora) is a polyphenol-rich fruit with antioxidant and antidepressant properties, among others. Therefore, this study investigated the effect of purple pitanga extract (PPE) on acute early oxidative stress induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats. Male Wistar rats were pre-treated orally with PPE (1000 mg/kg) or vehicle. After 24 h, MPTP (0.1 mg/10µL/nostril) or vehicle was administered bilaterally into the animal's nostrils, and 6 h later, the olfactory bulb (OB), striatum (ST), and substantia nigra (SN) were collected to evaluate the oxidative stress parameters. Our findings revealed that OB and SN were the most affected areas after 6 h of MPTP infusion; an early increase in reactive oxygen species (ROS) levels was observed, while pretreatment with a single dose of PPE prevented this increment. No differences in thiobarbituric acid reactive species (TBARS) and 3-nitrotyrosine (3-NT) formation were observed, although 4-hydroxy-2-nonenal (4-HNE) levels increased, which is the most toxic form of lipid peroxidation, in the MPTP group. The PPE pretreatment could prevent this increase by increasing the NPSH levels previously decreased by MPTP. Furthermore, PPE prevents the Na+/K + ATPase strongly inhibited by MPTP, showing the neuroprotective capacity of the PPE by inhibiting the MPTP-generated oxidation. Thus, we demonstrated for the first time the antioxidant and neuroprotective effects of PPE against the early MPTP neurotoxicity.
Collapse
Affiliation(s)
| | - Anne Suely P Savall
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Jhuly Dornelles Mello
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Caroline Brandão Quines
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
- Regional University of the Northwest of the State of Rio Grande do Sul - Campus Ijuí, Ijuí, CEP 98700-000, RS, Brazil
| | | | | | | | - Daiana Silva de Ávila
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Suzan Gonçalves Rosa
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil.
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil.
| |
Collapse
|
2
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
3
|
Thirugnanam T, Santhakumar K. Chemically induced models of Parkinson's disease. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109213. [PMID: 34673252 DOI: 10.1016/j.cbpc.2021.109213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Environmental toxins are harmful substances detrimental to humans. Constant exposure to these fatal neurotoxins can cause various neurodegenerative disorders. Although poisonous, specific neurotoxins at optimal concentrations mimic the clinical features of neurodegenerative diseases in several animal models. Such chemically-induced model systems are beneficial in deciphering the molecular mechanisms of neurodegeneration and drug screening for these disorders. One such neurotoxin is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a widely used chemical that recapitulates Parkinsonian features in various animal models. Apart from MPTP, other neurotoxins like 6-hydroxydopamine (6-OHDA), paraquat, rotenone also induce specific clinical features of Parkinson's disease in animal models. These chemically-induced Parkinson's disease models are playing a crucial role in understanding Parkinson's disease onset, pathology, and novel therapeutics. In this review, we provide a concise overview of various neurotoxins that can recapitulate Parkinsonian features in different in vivo and in vitro model systems specifically focusing on the different treatment methodologies of neurotoxins.
Collapse
Affiliation(s)
- Thilaga Thirugnanam
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Kuter KZ, Śmiałowska M, Ossowska K. The influence of preconditioning with low dose of LPS on paraquat-induced neurotoxicity, microglia activation and expression of α-synuclein and synphilin-1 in the dopaminergic system. Pharmacol Rep 2021; 74:67-83. [PMID: 34762280 PMCID: PMC8786770 DOI: 10.1007/s43440-021-00340-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Background Prolonged inflammation, oxidative stress, and protein aggregation are important factors contributing to Parkinson’s disease (PD) pathology. A known ROS generator, pesticide paraquat (PQ), was indicated as an environmental substance potentially increasing the incidence of PD and is used to model this disease. We investigated if a combination of inflammation and oxidative stress in subthreshold doses would exacerbate the modelled neuropathology. Methods We examined the late effects of acute or repeated peripheral inflammation induced by low dose of LPS (10 μg/kg, ip) on PQ toxicity in the rat nigrostriatal dopaminergic pathway, microglial activation markers and expression of major Lewy bodies proteins, α-synuclein and synphilin-1. Results We observed that LPS increased, while PQ decreased body temperature and microglia CD11b expression in the SN. Single LPS pretreatment, 3 h before repeated weekly PQ injections (4×) slightly aggravated neuronal degeneration in the SN. Moreover, degeneration of dopaminergic neurons after weekly repeated inflammation itself (4×) was observed. Interestingly, repeated LPS administration combined with each PQ dose counteracted such effect. The expression of α-synuclein decreased after repeated LPS injections, while only combined, repeated LPS and PQ treatment lowered the levels of synphilin-1. Therefore, α-synuclein and synphilin-1 expression change was influenced by different mechanisms. Concomitantly, decreased levels of the two proteins correlated with decreased degeneration of dopaminergic neurons and with a normalized microglia activation marker. Conclusions Our results indicate that both oxidative insult triggered by PQ and inflammation caused by peripheral LPS injection can individually induce neurotoxicity. Those factors act through different mechanisms that are not additive and not selective towards dopaminergic neurons, probably implying microglia. Repeated, but small insults from oxidative stress and inflammation when administered in significant time intervals can counteract each other and even act protective as a preconditioning effect. The timing of such repetitive insults is also of essence. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00340-1.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Kraków, Poland.
| | - Maria Śmiałowska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krystyna Ossowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Kraków, Poland
| |
Collapse
|
5
|
Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, Yang Y, Garcia-Canibano B, Balakrishnan S, Abinahed J, Al Ansari A, Dakua SP. Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem Neurosci 2021; 12:1835-1853. [PMID: 34008957 DOI: 10.1021/acschemneuro.1c00087] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a prime focus for clinicians to maintain the homeostatic function in health and deliver the theranostics in brain cancer and number of neurological diseases. The structural hierarchy and in situ biochemical signaling of BBB neurovascular unit have been primary targets to recapitulate into the in vitro modules. The microengineered perfusion systems and development in 3D cellular and organoid culture have given a major thrust to BBB research for neuropharmacology. In this review, we focus on revisiting the nanoparticles based bimolecular engineering to enable them to maneuver, control, target, and deliver the theranostic payloads across cellular BBB as nanorobots or nanobots. Subsequently we provide a brief outline of specific case studies addressing the payload delivery in brain tumor and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, multiple sclerosis, etc.). In addition, we also address the opportunities and challenges across the nanorobots' development and design. Finally, we address how computationally powered machine learning (ML) tools and artificial intelligence (AI) can be partnered with robotics to predict and design the next generation nanorobots to interact and deliver across the BBB without causing damage, toxicity, or malfunctions. The content of this review could be references to multidisciplinary science to clinicians, roboticists, chemists, and bioengineers involved in cutting-edge pharmaceutical design and BBB research.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | - Poonam Janapareddy
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Divya Elsa Mathews
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), 24404 Doha, Qatar
| | | | | | - Julien Abinahed
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Abdulla Al Ansari
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
6
|
Tsai YJ, Jhong YC, Ching SH, Liao YC, Ching CH, Chuang JI. Cold Exposure After Exercise Impedes the Neuroprotective Effects of Exercise on Thermoregulation and UCP4 Expression in an MPTP-Induced Parkinsonian Mouse Model. Front Neurosci 2020; 14:573509. [PMID: 33041765 PMCID: PMC7522410 DOI: 10.3389/fnins.2020.573509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Moderate exercise and mild hypothermia have protective effects against brain injury and neurodegeneration. Running in a cold environment alters exercise-induced hyperthermia and outcomes; however, evaluations of post-exercise cold exposure related to exercise benefits for the brain are relatively rare. We investigated the effects of 4°C cold exposure after exercise on exercise-induced thermal responses and neuroprotection in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced Parkinsonian mouse model. Male C57BL/6J mice were pretreated with MPTP for five consecutive days and follow-up treadmill exercise for 4 weeks. After 1-h running at a 22°C temperature, the mice were exposed to a 4°C environment for 2 h. An MPTP injection induced a transient drop in body and brain temperatures, while mild brain hypothermia was found to last for 4 weeks after MPTP treatment. Preventing brain hypothermia by exercise or 4°C exposure was associated with an improvement in MPTP-induced striatal uncoupling protein 4 (UCP4) downregulation and nigrostriatal dopaminergic neurodegeneration. However, 4°C exposure after exercise abrogated the exercise-induced beneficial effects and thermal responses in MPTP-treated mice, including a low amplitude of exercise-induced brain hyperthermia and body temperature while at rest after exercise. Our findings elucidate that post-exercise thermoregulation and UCP4 expression are important in the neuroprotective effects of exercise against MPTP toxicity.
Collapse
Affiliation(s)
- Yi-Ju Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yue-Cih Jhong
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hong Ching
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ching Liao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsin Ching
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Ing Chuang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Liu C, Liu Z, Zhang Z, Li Y, Fang R, Li F, Zhang J. A Scientometric Analysis and Visualization of Research on Parkinson's Disease Associated With Pesticide Exposure. Front Public Health 2020; 8:91. [PMID: 32318533 PMCID: PMC7154051 DOI: 10.3389/fpubh.2020.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
The etiology and pathogenesis of Parkinson's disease (PD) have not yet been clearly described. Both genetic and environmental factors contribute to the onset and progression of PD. Some pesticides have been demonstrated to be associated with PD by many previous studies and experiments, and an increasing number of researchers have paid attention to this area in recent years. This paper aims to explore the knowledge structure, analyze the current research hot spots, and discuss the research trend through screening and summarizing the present literature. Based on 1767 articles from the Web of Science Core Collection and PubMed database, this study carried out the analysis from the keywords, cited references, countries, authors, and some other aspects by using Citespace. The hot topics, valuable articles, and productive authors in this research field could be found after that. To the best of our knowledge, this is the first study to specifically visualize the relationship between pesticide exposure and PD, and forecast research tendency in the future.
Collapse
Affiliation(s)
- Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanan Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Ruying Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Fei Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China.,School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China
| |
Collapse
|
8
|
Bhalerao A, Sivandzade F, Archie SR, Chowdhury EA, Noorani B, Cucullo L. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 2020; 17:22. [PMID: 32178700 PMCID: PMC7077137 DOI: 10.1186/s12987-020-00183-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a fundamental component of the central nervous system. Its functional and structural integrity is vital in maintaining the homeostasis of the brain microenvironment. On the other hand, the BBB is also a major hindering obstacle for the delivery of effective therapies to treat disorders of the Central Nervous System (CNS). Over time, various model systems have been established to simulate the complexities of the BBB. The development of realistic in vitro BBB models that accurately mimic the physiological characteristics of the brain microcapillaries in situ is of fundamental importance not only in CNS drug discovery but also in translational research. Successful modeling of the Neurovascular Unit (NVU) would provide an invaluable tool that would aid in dissecting out the pathological factors, mechanisms of action, and corresponding targets prodromal to the onset of CNS disorders. The field of BBB in vitro modeling has seen many fundamental changes in the last few years with the introduction of novel tools and methods to improve existing models and enable new ones. The development of CNS organoids, organ-on-chip, spheroids, 3D printed microfluidics, and other innovative technologies have the potential to advance the field of BBB and NVU modeling. Therefore, in this review, summarize the advances and progress in the design and application of functional in vitro BBB platforms with a focus on rapidly advancing technologies.
Collapse
Affiliation(s)
- Aditya Bhalerao
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
9
|
Okano M, Takahata K, Sugimoto J, Muraoka S. Selegiline Recovers Synaptic Plasticity in the Medial Prefrontal Cortex and Improves Corresponding Depression-Like Behavior in a Mouse Model of Parkinson's Disease. Front Behav Neurosci 2019; 13:176. [PMID: 31427934 PMCID: PMC6688712 DOI: 10.3389/fnbeh.2019.00176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
In patients with Parkinson’s disease (PD), non-motor symptoms (NMS) including depression and anxiety are often recognized before motor symptoms develop. Monoamine oxidase (MAO)-B inhibitors are therapeutically effective for motor symptoms; however, their effects on NMS in PD are yet to be fully assessed. Here, we aimed to explore the antidepressant-like effects of propargyl MAO-B inhibitors, selegiline and rasagiline, in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a PD model, and to elucidate the mechanisms underlying these effects. Four repeated intraperitoneal injections of MPTP at 17.5 mg/kg to C57BL/6 mice led to a partial reduction in the number of nigrostriatal tyrosine hydroxylase-positive neurons and to the extension of immobility time during the tail suspension test (TST), without any obvious induction of motor deficits. A single subcutaneous administration of selegiline at 10 mg/kg shortened the extended immobility time of MPTP mice in the TST, without any increase in motor activities, suggesting that selegiline exerts antidepressant-like effects. In this test, rasagiline did not produce antidepressant-like effects, although the inhibitory effect of 3 mg/kg rasagiline on brain MAO activity was comparable to that of 10 mg/kg selegiline. The shortened immobility time in the TST correlated with reduced cortical dopamine (DA) turnover rates in MPTP mice treated with selegiline, but not in MPTP mice treated with rasagiline. These results suggest that MAO inhibition does not entirely account for the antidepressant-like effects of selegiline. Administration of selegiline (10 mg/kg), but not rasagiline (1 mg/kg), to MPTP mice restored the impaired long-term potentiation induced by high-frequency stimulation in the medial prefrontal cortex (mPFC), and normalized the reduced phosphorylation of Ca2+/calmodulin-dependent protein kinase IIα, which is known to be involved in neuroplasticity, in the frontal cortex. In MPTP mice, the antiparkinsonian drug pramipexole (0.3 mg/kg), a DA D2 and D3 receptor agonist, that has been shown to be effective in treating depression in PD, ameliorated depression-like behavior and synaptic dysfunction in the mPFC. Taken together, the antidepressant-like effects of selegiline in MPTP mice are attributable to the restoration of impaired synaptic plasticity in the mPFC, suggesting its potential for treating depression in early PD.
Collapse
Affiliation(s)
- Motoki Okano
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Osaka, Japan
| | - Kazue Takahata
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Osaka, Japan
| | - Junya Sugimoto
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Osaka, Japan
| | - Shizuko Muraoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Osaka, Japan
| |
Collapse
|
10
|
Hwang DJ, Kwon KC, Song HK, Kim KS, Jung YS, Hwang DY, Cho JY. Comparative analysis of dose-dependent neurotoxic response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 N mice derived from three different sources. Lab Anim Res 2019; 35:10. [PMID: 32257898 PMCID: PMC7081672 DOI: 10.1186/s42826-019-0012-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is commonly used to induce nigrostriatal defects to induce parkinsonism and/or parkinsonian syndrome, to replicate the lesions seen in Parkinson’s disease (PD), with use in numerous PD models in mice. It has been suggested that various biological characteristics including strain could result in differing mortality rates, sensitivity to MPTP administration, and reproducibility of lesions in mice, but there is no evidence on the sensitivity of C57BL/6 mice from different origins to MPTP and its associated pathological lesions. In this study, we investigated the magnitude of the dose-dependent response to acute MPTP administration in C57BL/6NKorl mice and two commercialized C57BL/6 stocks derived from the United States and Japan. We measured biological features (body weight, temperature, and composition), nigrostriatal neurotoxic responses (dopamine levels, tyrosine hydroxylase enzymes, and protein carbonylation) and motor function. In results, the three different C57BL/6 stocks exhibited similar overall neurotoxic response and locomotor impairment which increased in a dose-dependent manner with acute MPTP administration (10 mg/kg, 20 mg/kg, and 30 mg/kg, all with external heat support), although some of these differences were not significant. In conclusion, this study provides scientific evidence that C57BL/6NKorl mice can be used as an alternative animal model for practical and targeted PD research.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- 1Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, 05541 South Korea
| | - Ki-Chun Kwon
- 1Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, 05541 South Korea
| | - Hyun-Keun Song
- 2Department of Microbiology and Immunology, INJE University College of Medicine, Busan, 47392 South Korea
| | - Kil-Soo Kim
- 3College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 South Korea
| | - Young-Suk Jung
- 4College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Dae-Youn Hwang
- 5Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463 South Korea
| | - Joon-Yong Cho
- 1Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, 05541 South Korea
| |
Collapse
|
11
|
Autonomic dysfunction in Parkinson disease and animal models. Clin Auton Res 2019; 29:397-414. [PMID: 30604165 DOI: 10.1007/s10286-018-00584-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Parkinson disease has traditionally been classified as a movement disorder, despite patients' accounts of diverse symptoms stemming from impairments in numerous body systems. Today, Parkinson disease is increasingly recognized by clinicians and scientists as a complex neurodegenerative disorder featuring both motor and nonmotor manifestations concomitant with pathology throughout all major branches of the nervous system. Dysfunction of the autonomic nervous system, or dysautonomia, is a common feature of Parkinson disease. It produces signs and symptoms that severely affect patients' quality of life, such as blood pressure dysregulation, hyperhidrosis, and constipation. Treatment options for dysautonomia are limited to symptom alleviation because the cause of these symptoms and Parkinson disease overall are still unknown. Animal models provide a platform to interrogate mechanisms of Parkinson disease-related autonomic nervous system dysfunction and test novel treatment strategies. Several animal models of Parkinson disease are available, each with different effects on the autonomic nervous system. This review critically analyses key dysautonomia signs and symptoms and associated pathology in Parkinson disease patients and relevant findings in animal models. We focus on the cardiovascular system, adrenal medulla, skin/thermoregulation, bladder, pupils, and gastrointestinal tract, to assess the contribution of animal models to the understanding of Parkinson disease autonomic dysfunction.
Collapse
|
12
|
Nzou G, Wicks RT, Wicks EE, Seale SA, Sane CH, Chen A, Murphy SV, Jackson JD, Atala AJ. Human Cortex Spheroid with a Functional Blood Brain Barrier for High-Throughput Neurotoxicity Screening and Disease Modeling. Sci Rep 2018; 8:7413. [PMID: 29743549 PMCID: PMC5943588 DOI: 10.1038/s41598-018-25603-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
The integral selectivity characteristic of the blood brain barrier (BBB) limits therapeutic options for many neurologic diseases and disorders. Currently, very little is known about the mechanisms that govern the dynamic nature of the BBB. Recent reports have focused on the development and application of human brain organoids developed from neuro-progenitor cells. While these models provide an excellent platform to study the effects of disease and genetic aberrances on brain development, they may not model the microvasculature and BBB of the adult human cortex. To date, most in vitro BBB models utilize endothelial cells, pericytes and astrocytes. We report a 3D spheroid model of the BBB comprising all major cell types, including neurons, microglia and oligodendrocytes, to recapitulate more closely normal human brain tissue. Spheroids show expression of tight junctions, adherens junctions, adherens junction-associated proteins and cell specific markers. Functional assessment using MPTP, MPP+ and mercury chloride indicate charge selectivity through the barrier. Junctional protein distribution was altered under hypoxic conditions. Our spheroid model may have potential applications in drug discovery, disease modeling, neurotoxicity and cytotoxicity testing.
Collapse
Affiliation(s)
- Goodwell Nzou
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA.
| | - R T Wicks
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
- Department of Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - E E Wicks
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - S A Seale
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - C H Sane
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - A Chen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - S V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - J D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - A J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| |
Collapse
|
13
|
Smeyne RJ, Breckenridge CB, Beck M, Jiao Y, Butt MT, Wolf JC, Zadory D, Minnema DJ, Sturgess NC, Travis KZ, Cook AR, Smith LL, Botham PA. Assessment of the Effects of MPTP and Paraquat on Dopaminergic Neurons and Microglia in the Substantia Nigra Pars Compacta of C57BL/6 Mice. PLoS One 2016; 11:e0164094. [PMID: 27788145 PMCID: PMC5082881 DOI: 10.1371/journal.pone.0164094] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
The neurotoxicity of paraquat dichloride (PQ) was assessed in two inbred strains of 9- or 16-week old male C57BL/6 mice housed in two different laboratories and compared to the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PQ was administered by intraperitoneal injections; either once (20 mg/kg) or twice (10 mg/kg) weekly for 3 weeks, while MPTP-HCl was injected 4 times on a single day (20 mg/kg/dose). Brains were collected 8, 16, 24, 48, 96 or 168 hours after the last PQ treatment, and 48 or 168 hours after MPTP treatment. Dopamine neurons in the substantia nigra pars compacta (SNpc) were identified by antibodies to tyrosine hydroxylase (TH+) and microglia were identified using Iba-1 immunoreactivity. The total number of TH+ neurons and the number of resting and activated microglia in the SNpc at 168 hours after the last dose were estimated using model- or design-based stereology, with investigators blinded to treatment. In a further analysis, a pathologist, also blinded to treatment, evaluated the SNpc and/or striatum for loss of TH+ neurons (SNpc) or terminals (striatum), cell death (as indicated by amino cupric silver uptake, TUNEL and/or caspase 3 staining) and neuroinflammation (as indicated by Iba-1 and/or GFAP staining). PQ, administered either once or twice weekly to 9- or 16-week old mice from two suppliers, had no effect on the number of TH+ neurons or microglia in the SNpc, as assessed by two groups, each blinded to treatment, using different stereological methods. PQ did not induce neuronal cell loss or degeneration in the SNpc or striatum. Additionally, there was no evidence of apoptosis, microgliosis or astrogliosis. In MPTP-treated mice, the number of TH+ neurons in the SNpc was significantly decreased and the number of activated microglia increased. Histopathological assessment found degenerating neurons/terminals in the SNpc and striatum but no evidence of apoptotic cell death. MPTP activated microglia in the SNpc and increased the number of astrocytes in the SNpc and striatum.
Collapse
Affiliation(s)
- Richard Jay Smeyne
- St. Jude Children’s Research Hospital, Dept. of Developmental Neurobiology, 262 Danny Thomas Place, Memphis, TN 38105, United States of America
- * E-mail:
| | - Charles B. Breckenridge
- Syngenta Crop Protection, LLC, P.O. Box 18300, Greensboro, NC 27419–8300, United States of America
| | - Melissa Beck
- WIL Research Laboratories, LLC., Ashland, OH 44805, United States of America
| | - Yun Jiao
- St. Jude Children’s Research Hospital, Dept. of Developmental Neurobiology, 262 Danny Thomas Place, Memphis, TN 38105, United States of America
| | - Mark T. Butt
- Tox Path Specialists, LLC, 8747 Chestnut Grove Road, Frederick, MD 21701–2607, United States of America
| | - Jeffrey C. Wolf
- Experimental Pathology Laboratories, Inc., 45600 Terminal Drive, Sterling, VA 20166, United States of America
| | - Dan Zadory
- Experimental Pathology Laboratories, Inc., 45600 Terminal Drive, Sterling, VA 20166, United States of America
| | - Daniel J. Minnema
- Syngenta Crop Protection, LLC, P.O. Box 18300, Greensboro, NC 27419–8300, United States of America
| | - Nicholas C. Sturgess
- Syngenta Limited, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Kim Z. Travis
- Syngenta Limited, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Andrew R. Cook
- Syngenta Limited, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Lewis L. Smith
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Philip A. Botham
- Syngenta Limited, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| |
Collapse
|