1
|
Giustiniani A, Quartarone A. Defining the concept of reserve in the motor domain: a systematic review. Front Neurosci 2024; 18:1403065. [PMID: 38745935 PMCID: PMC11091373 DOI: 10.3389/fnins.2024.1403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
A reserve in the motor domain may underlie the capacity exhibited by some patients to maintain motor functionality in the face of a certain level of disease. This form of "motor reserve" (MR) could include cortical, cerebellar, and muscular processes. However, a systematic definition has not been provided yet. Clarifying this concept in healthy individuals and patients would be crucial for implementing prevention strategies and rehabilitation protocols. Due to its wide application in the assessment of motor system functioning, non-invasive brain stimulation (NIBS) may support such definition. Here, studies focusing on reserve in the motor domain and studies using NIBS were revised. Current literature highlights the ability of the motor system to create a reserve and a possible role for NIBS. MR could include several mechanisms occurring in the brain, cerebellum, and muscles, and NIBS may support the understanding of such mechanisms.
Collapse
|
2
|
Zeller D, Hiew S, Odorfer T, Nguemeni C. Considering the response in addition to the challenge - a narrative review in appraisal of a motor reserve framework. Aging (Albany NY) 2024; 16:5772-5791. [PMID: 38499388 PMCID: PMC11006496 DOI: 10.18632/aging.205667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 03/20/2024]
Abstract
The remarkable increase in human life expectancy over the past century has been achieved at the expense of the risk of age-related impairment and disease. Neurodegeneration, be it part of normal aging or due to neurodegenerative disorders, is characterized by loss of specific neuronal populations, leading to increasing clinical impairment. The individual course may be described as balance between aging- or disease-related pathology and intrinsic mechanisms of adaptation. There is plenty of evidence that the human brain is provided with exhaustible resources to maintain function in the face of adverse conditions. While a reserve concept has mainly been coined in cognitive neuroscience, emerging evidence suggests similar mechanisms to underlie individual differences of adaptive capacity within the motor system. In this narrative review, we summarize what has been proposed to date about a motor reserve (mR) framework. We present current evidence from research in aging subjects and people with neurological conditions, followed by a description of what is known about potential neuronal substrates of mR so far. As there is no gold standard of mR quantification, we outline current approaches which describe various indicators of mR. We conclude by sketching out potential future directions of research. Expediting our understanding of differences in individual motor resilience towards aging and disease will eventually contribute to new, individually tailored therapeutic strategies. Provided early diagnosis, enhancing the individual mR may be suited to postpone disease onset by years and may be an efficacious contribution towards healthy aging, with an increased quality of life for the elderly.
Collapse
Affiliation(s)
- Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Shawn Hiew
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Thorsten Odorfer
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Carine Nguemeni
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| |
Collapse
|
3
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Zhang D, Shi Y, Yao J, Zhou L, Wei H, Liu J, Tong Q, Ma L, He H, Wu T. Free-Water Imaging of the Substantia Nigra in GBA Pathogenic Variant Carriers. Mov Disord 2023. [PMID: 36797645 DOI: 10.1002/mds.29356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Pathogenic variants in the glucocerebrosidase gene (GBA) have been identified as the most common genetic risk factor for Parkinson's disease (PD). However, the features of substantia nigra damage in GBA pathogenic variant carriers remain unclear. OBJECTIVE We aimed to evaluate the microstructural changes in the substantia nigra in non-manifesting GBA pathogenic variant carriers (GBA-NMC) and PD patients with GBA pathogenic variant (GBA-PD) with free-water imaging. METHODS First, we compared free water values in the posterior substantia nigra between non-manifesting non-carriers (NMNC, n = 29), GBA-NMC (n = 26), and GBA-PD (n = 16). Then, free water values in the posterior substantia nigra were compared between GBA-PD and early- (n = 19) and late-onset (n = 40) idiopathic PD (iPD) patients. Furthermore, we examined whether the baseline free water values could predict the progressions of clinical symptoms. RESULTS The free water values in the posterior substantia nigra were significantly higher in the GBA-NMC and GBA-PD groups compared to NMNC, and were significantly increased in the GBA-PD group than both early- and late-onset iPD. Free water values in the posterior substantia nigra could predict the progression of anxiety and cognitive decline in GBA-NMC and GBA-PD groups. CONCLUSIONS We demonstrate that free water values are elevated in the substantia nigra and predict the development of non-motor symptoms in GBA-NMC and GBA-PD. Our findings demonstrate that a significant nigral impairment already exists in GBA-NMC, and nigral injury may be more severe in GBA-PD than in iPD. These results support that free-water imaging can as a potential early marker of substantia nigra damage. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuting Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Lingyan Ma
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,School of Physics, Zhejiang University, Hangzhou, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Jeong SH, Park CW, Lee HS, Kim YJ, Yun M, Lee PH, Sohn YH, Chung SJ. Patterns of striatal dopamine depletion and motor deficits in de novo Parkinson's disease. J Neural Transm (Vienna) 2023; 130:19-28. [PMID: 36462096 DOI: 10.1007/s00702-022-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022]
Abstract
The background of this study is to investigate whether striatal dopamine depletion patterns (selective involvement in the sensorimotor striatum or asymmetry) are associated with motor deficits in Parkinson's disease (PD). We enrolled 404 drug-naïve patients with early stage PD who underwent dopamine transporter (DAT) imaging. After quantifying DAT availability in each striatal sub-region, principal component (PC) analysis was conducted to yield PCs representing the spatial patterns of striatal dopamine depletion. Subsequently, multivariate linear regression analysis was conducted to investigate the relationship between striatal dopamine depletion patterns and motor deficits assessed using the Unified PD Rating Scale Part III (UPDRS-III). Mediation analyses were used to evaluate whether dopamine deficiency in the posterior putamen mediated the association between striatal dopamine depletion patterns and parkinsonian motor deficits. Three PCs indicated patterns of striatal dopamine depletion: PC1 (overall striatal dopamine deficiency), PC2 (selective dopamine loss in the sensorimotor striatum), and PC3 (symmetric dopamine loss in the striatum). Multivariate linear regression analysis revealed that PC1 (β = - 1.605, p < 0.001) and PC2 (β = 3.201, p < 0.001) were associated with motor deficits (i.e., higher UPDRS-III scores in subjects with severe dopamine depletion throughout the whole striatum or more selective dopamine loss in the sensorimotor striatum), whereas PC3 was not (β = - 0.016, p = 0.992). Mediation analyses demonstrated that the effects of PC1 and PC2 on UPDRS-III scores were indirectly mediated by DAT availability in the posterior putamen, with a non-significant direct effect. Dopamine deficiency in the posterior putamen was most relevant to the severity of motor deficits in patients with PD, while the spatial patterns of striatal dopamine depletion were not a key determinant.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea.,Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea.,YONSEI BEYOND LAB, Yongin, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea. .,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea. .,YONSEI BEYOND LAB, Yongin, South Korea.
| |
Collapse
|
6
|
Kim YJ, Park CW, Shin HW, Lee HS, Kim YJ, Yun M, Lee PH, Sohn YH, Jeong Y, Chung SJ. Identifying the white matter structural network of motor reserve in early Parkinson's disease. Parkinsonism Relat Disord 2022; 102:108-114. [PMID: 35987039 DOI: 10.1016/j.parkreldis.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Motor reserve refers to the individual capacity to cope with nigrostriatal dopamine depletion in Parkinson's disease (PD). This study aimed to explore the white matter structural network associated with motor reserve in patients with newly diagnosed PD. METHODS A total of 238 patients with early-stage drug-naïve PD who underwent 18F-FP-CIT PET and brain MRI scans at initial assessment were enrolled. We estimated individual motor reserve based on the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) scores and dopamine transporter availability in the posterior putamen using a residual model. Then, we performed threshold-free network-based statistics (TFNBS) analysis to identify the structural brain network associated with the estimated motor reserve. We also assessed the effect of the network connectivity strength on the longitudinal increase in levodopa-equivalent dose (LED). RESULTS The mean age at PD symptom onset was 69.10 ± 9.03 years and the mean UPDRS-III score at the time of PD diagnosis was 22.44 ± 9.72. TFNBS analysis identified a motor reserve-associated structural network whose nodes were mainly in the frontal region and cerebellum. Higher network strength (i.e., greater motor reserve) was associated with a slower longitudinal increase in LED during a 3-year follow-up period. CONCLUSION The structural brain network is associated with motor reserve in patients with PD. Connectivity strength within the identified network indicates the individual's capacity to tolerate PD-related pathologies, which is maintained with disease progression and affects the long-term motor prognosis of PD.
Collapse
Affiliation(s)
- Yae Ji Kim
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Won Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; YONSEI BEYOND LAB, Yongin, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; YONSEI BEYOND LAB, Yongin, South Korea.
| |
Collapse
|