1
|
Xu B, He T, Lu Y, Jia J, Sahakian BJ, Robbins TW, Jin L, Ye Z. Locus coeruleus integrity correlates with inhibitory functions of the fronto-subthalamic 'hyperdirect' pathway in Parkinson's disease. Neuroimage Clin 2022; 36:103276. [PMID: 36510410 PMCID: PMC9723406 DOI: 10.1016/j.nicl.2022.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
A long-running debate concerns whether dopamine or noradrenaline deficiency drives response disinhibition in Parkinson's disease (PD). This study aimed to investigate whether damage to the locus coeruleus (LC) or substantia nigra (SN) might impact inhibitory functions of the fronto-subthalamic hyperdirect or fronto-striatal indirect pathway. Patients with PD (n = 29, 13 women) and matched healthy controls (n = 29, 15 women) participated in this cross-sectional study. LC and SN integrity was assessed using neuromelanin-sensitive MRI. Response inhibition was measured using fMRI with a stop-signal task. In healthy controls, LC (but not SN) integrity correlated with the stopping-related activity of the right inferior frontal gyrus (IFG) and right subthalamic nucleus (STN), which further correlated with stop-signal reaction time (SSRT). PD patients showed reduced LC integrity, longer SSRT, and lower stopping-related activity over the right IFG, pre-supplementary motor area, and right caudate nucleus than healthy controls. In PD patients, the relationship between SSRT and the fronto-subthalamic pathway was preserved. However, LC integrity no longer correlated with the stopping-related right IFG or right STN activity. No contribution of SN integrity was found during stopping. In conclusion, LC (but not SN) might modulate inhibitory functions of the right IFG-STN pathway. Damage to the LC might impact the right IFG-STN pathway during stopping, leading to response disinhibition in PD.
Collapse
Affiliation(s)
- Biman Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road 19(A), Beijing 100049, China
| | - Tingting He
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Yuan Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| | - Jia Jia
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road 220, Shanghai 200433, China
| | - Trevor W. Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road 220, Shanghai 200433, China
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| |
Collapse
|
2
|
Heldmann M, Mönch E, Kesseböhmer A, Brüggemann N, Münte TF, Ye Z. Pramipexole modulates fronto-subthalamic pathway in sequential working memory. Neuropsychopharmacology 2022; 48:716-723. [PMID: 36352204 PMCID: PMC10066371 DOI: 10.1038/s41386-022-01494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Brain dopamine may regulate the ability to maintain and manipulate sequential information online. However, the precise role of dopamine remains unclear. This pharmacological fMRI study examined whether and how the dopamine D2/3 receptor agonist pramipexole modulates fronto-subthalamic or fronto-striatal pathways during sequential working memory. This study used a double-blind, randomized crossover design. Twenty-two healthy male volunteers completed a digit ordering task during fMRI scanning after receiving a single oral dose of 0.5-mg pramipexole or placebo. The pramipexole effects on task performance, regional activity, activity pattern similarity, and functional connectivity were analyzed. Pramipexole impaired task performance, leading to less accurate and slower responses in the digit ordering task. Also, it downregulated the maintenance-related subthalamic and dorsolateral prefrontal activity, increasing reaction times for maintaining sequences. In contrast, pramipexole upregulated the manipulation-related subthalamic and dorsolateral prefrontal activity, increasing reaction time costs for manipulating sequences. In addition, it altered the dorsolateral prefrontal activity pattern similarity and fronto-subthalamic functional connectivity. Finally, pramipexole reduced maintenance-related striatal activity, which did not affect the behavior. This study confirms the role of the fronto-subthalamic pathway in sequential working memory. Furthermore, it shows that D2 transmission can regulate sequential working memory by modulating the fronto-subthalamic pathway.
Collapse
Affiliation(s)
- Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, 23538, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, 23538, Germany
| | - Eliana Mönch
- Department of Neurology, University of Lübeck, Lübeck, 23538, Germany
| | | | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, 23538, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, 23538, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, 23538, Germany. .,Institute of Psychology II, University of Lübeck, Lübeck, 23538, Germany.
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|