1
|
Lench DH, Doolittle JD, Ramakrishnan V, Rowland N, Revuelta GJ. Subthalamic functional connectivity associated with freezing of gait dopa-response. Parkinsonism Relat Disord 2024; 118:105952. [PMID: 38101024 PMCID: PMC10872230 DOI: 10.1016/j.parkreldis.2023.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Freezing of gait (FOG) is a prevalent and debilitating feature of Parkinson's Disease (PD). The subthalamic nucleus (STN) is a center for controlled locomotion and a common DBS target. The objective of this study was to identify STN circuitry associated with FOG response to dopaminergic medication. In this study, we compare BOLD functional connectivity of the subthalamic nucleus (STN) in participants with and without dopa-responsive FOG. METHODS 55 PD participants either with FOG (n = 38) or without FOG (n = 17) were recruited. Among FOG participants 22 were dopa-responsive and 16 were dopa-unresponsive. STN whole-brain connectivity was performed using CONN toolbox. The relationship between the degree of self-reported FOG dopa-response and STN connectivity was evaluated using partial correlations corrected for age, disease duration, and levodopa equivalent daily dose. RESULTS Right STN connectivity with the cerebellar locomotor region and the temporal/occipital cortex was greater in the dopa-responsive FOG group (voxel threshold p < 0.01, FWE corrected p < 0.05). Left STN connectivity with the occipital cortex was greater in the dopa-responsive FOG group and connectivity with the postcentral gyrus was greater in the dopa-unresponsive FOG group. Strength of connectivity to these regions correlated with l-dopa induced improvement in UPDRS Item-14 (FOG), but not UPDRS Part-III (overall motor score). DISCUSSION We demonstrate that dopa-unresponsive FOG is associated with changes in BOLD functional connectivity between the STN and locomotor as well as sensory processing regions. This finding supports the conceptual framework that effective treatment for freezing of gait likely requires the engagement of both locomotor and sensory brain regions.
Collapse
Affiliation(s)
- Daniel H. Lench
- Department of Neurology, Medical University of South Carlina, Charleston, SC, USA
| | - Jade D. Doolittle
- Department of Neurology, Medical University of South Carlina, Charleston, SC, USA
| | | | - Nathan Rowland
- Department of Neurosurgery, Medical University of South Carlina, Charleston, SC, USA
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gonzalo J. Revuelta
- Department of Neurology, Medical University of South Carlina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
2
|
Nathoo N, Gee M, Nelles K, Burt J, Sun H, Seres P, Wilman AH, Beaulieu C, Ba F, Camicioli R. Quantitative Susceptibility Mapping Changes Relate to Gait Issues in Parkinson's Disease. Can J Neurol Sci 2023; 50:853-860. [PMID: 36351571 DOI: 10.1017/cjn.2022.316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) demonstrates elevated iron content in Parkinson's disease (PD) patients within the basal ganglia, though it has infrequently been studied in relation to gait difficulties including freezing of gait (FOG). Our purpose was to relate QSM of basal ganglia and extra-basal ganglia structures with qualitative and quantitative gait measures in PD. METHODS This case-control study included PD and cognitively unimpaired (CU) participants from the Comprehensive Assessment of Neurodegeneration and Dementia study. Whole brain QSM was acquired at 3T. Region of interests (ROIs) were drawn blinded manually in the caudate nucleus, putamen, globus pallidus, pulvinar nucleus of the thalamus, red nucleus, substantia nigra, and dentate nucleus. Susceptibilities of ROIs were compared between PD and CU. Items from the FOG questionnaire and quantitative gait measures from PD participants were compared to susceptibilities. RESULTS Twenty-nine participants with PD and 27 CU participants were included. There was no difference in susceptibility values in any ROI when comparing CU versus PD (p > 0.05 for all). PD participants with gait impairment (n = 23) had significantly higher susceptibility in the putamen (p = 0.008), red nucleus (p = 0.01), and caudate nucleus (p = 0.03) compared to those without gait impairment (n = 6). PD participants with FOG (n = 12) had significantly higher susceptibility in the globus pallidus (p = 0.03) compared to those without FOG (n = 17). Among quantitative gait measures, only stride time variability was significantly different between those with and without FOG (p = 0.04). CONCLUSION Susceptibilities in basal ganglia and extra-basal ganglia structures are related to qualitative measures of gait impairment and FOG in PD.
Collapse
Affiliation(s)
- Nabeela Nathoo
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Myrlene Gee
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Krista Nelles
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Jacqueline Burt
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Hongfu Sun
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Fang Ba
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Richard Camicioli
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Kou W, Wang X, Zheng Y, Zhao J, Cai H, Chen H, Sui B, Feng T. Freezing of gait in Parkinson’s disease is associated with the microstructural and functional changes of globus pallidus internus. Front Aging Neurosci 2022; 14:975068. [PMID: 36062153 PMCID: PMC9434315 DOI: 10.3389/fnagi.2022.975068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFreezing of gait (FOG) is a common motor symptom in advanced Parkinson’s disease (PD). However, the pathophysiology mechanism of FOG is not fully understood. The purpose of this study was to investigate microstructural abnormalities in subcortical gray matter and alterations in functional connectivity of the nuclei with microstructural changes. In addition, the correlations between these microstructural and functional changes and the severity of FOG were measured.Materials and methodsTwenty-four patients with FOG (PD-FOG), 22 PD patients without FOG (PD-nFOG), and 27 healthy controls (HC) were recruited. FOG Questionnaire (FOGQ) and Gait and Falling Questionnaire (GFQ) were assessed, and Timed Up and Go (TUG) tests were performed in PD-FOG patients. All subjects underwent diffusion tensor imaging (DTI) and resting-state functional MRI scanning. The DTI measures, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD), were extracted and measured from basal ganglia, thalamus, and substantia nigra. The nuclei with microstructural alterations were selected as seed regions to perform the seed-based resting-state functional connectivity.ResultsThe MD and RD values of the right globus pallidus internus (GPi) were significantly higher in patients with PD-FOG compared with PD-nFOG patients and HC. In PD-FOG patients, the MD and RD values of the right GPi were significantly correlated with the time of the TUG test in both ON and OFF states. The MD values were also correlated with the GFQ scores in PD-FOG patients. Resting-state functional connectivity between the right GPi and left middle occipital gyri decreased significantly in PD-FOG patients compared to PD-nFOG patients, and was negatively correlated with GFQ scores as well as the time of ON state TUG in PD-FOG patients.ConclusionMicrostructural alterations in the right GPi and functional connectivity between the right GPi and visual cortex may be associated with the pathophysiological mechanisms of FOG in PD patients.
Collapse
Affiliation(s)
- Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuemei Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajia Zhao
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huimin Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Binbin Sui,
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tao Feng,
| |
Collapse
|