1
|
Guo T, Zhou C, Wen J, Wu J, Yan Y, Qin J, Xuan M, Wu H, Wu C, Chen J, Tan S, Duanmu X, Zhang B, Xu X, Zhang M, Guan X. Aberrant functional connectome gradient and its neurotransmitter basis in Parkinson's disease. Neurobiol Dis 2025; 206:106821. [PMID: 39889857 DOI: 10.1016/j.nbd.2025.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Patients with Parkinson's disease (PD) exhibit heterogenous clinical deficits not only in motor function, other deficits in both sensory and higher-order cognitive processing are also involved. Connectome studies have suggested a primary-to-transmodal gradient and a primary-to-primary gradient in functional brain networks, supporting the spectrum from sensation to cognition. However, whether these gradients are altered in PD patients and how these alterations associate with neurotransmitter profiles remain unknown. By constructing functional network and calculating its gradient in 134 PD patients and 172 normal controls, we compared functional connectivity gradients between groups and performed spearman correlation to explore the association between neurotransmitter expression and functional network gradient-based alternations in PD. Decreased first gradients were detected mainly in association cortex, including frontal cortex, insula, cingulate, and parietal cortex, corresponding to the decrement of frontoparietal/ventral attention network observed in network-level analyses. Decreased second gradients were observed in primary motor and somatosensory cortex, meeting the decrement of somatomotor network at the network level. Besides, network-level comparisons revealed the increment of visual network in the first gradient and increment of ventral attention network in the second gradient. Transcription-neuroimaging association analyses showed that changes of the first gradient were mainly negatively correlated with nondopaminergic system, while alterations of the second gradient were positively correlated with both dopaminergic and nondopaminergic systems. These results highlight the connectome gradient dysfunction in PD and its linkage with neurotransmitter expression profiles, providing insight into the molecular mechanisms for functional alterations underlying PD.
Collapse
Affiliation(s)
- Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Wen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaping Yan
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianmei Qin
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Xuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoting Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenqing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingwen Chen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sijia Tan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojie Duanmu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Lu W, Song T, Zang Z, Li J, Zhang Y, Lu J. Relaxometry network based on MRI R 2⁎ mapping revealing brain iron accumulation patterns in Parkinson's disease. Neuroimage 2024; 303:120943. [PMID: 39571643 DOI: 10.1016/j.neuroimage.2024.120943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/12/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Excessive iron accumulation in the brain has been implicated in Parkinson's disease (PD). However, the patterns and probable sequences of iron accumulation across the PD brain remain largely unknown. This study aimed to explore the sequence of iron accumulation across the PD brain using R2* mapping and a relaxometry covariance network (RCN) approach. METHODS R2* quantification maps were obtained from PD patients (n = 34) and healthy controls (n = 25). RCN was configured on R2* maps to identify covariance differences in iron levels between the two groups. Regions with excessive iron accumulation and large covariance changes in PD patients compared to controls were defined as propagators of iron. In the PD group, causal RCN analysis was performed on the R2* maps sequenced according to disease duration to investigate the dynamics of iron accumulations from the propagators. The associations between individual connections of the RCN and clinical information were analyzed in PD patients. RESULTS The left substantia nigra pars reticulata (SNpr), left substantia nigra pars compacta (SNpc), and lobule VII of the vermis (VER7) were identified as primary regions for iron accumulation and propagation (propagator). As the disease duration increased, iron accumulation in these three propagators demonstrated positive causal effects on the bilateral pallidum, bilateral gyrus rectus, right middle frontal gyrus, and medial and anterior orbitofrontal cortex (OFC). Furthermore, individual connections of VER7 with the left gyrus rectus and anterior OFC were positively associated with disease duration. CONCLUSIONS Our results indicate that the aberrant iron accumulation in PD involves several regions, mainly starts from the SN and cerebellum and extends to the pallidum and cortices. These findings provide preliminary information on sequences of iron accumulation in PD, which may advance our understanding of the disease.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Xuanwu Hospital, Beijing, 100053, China
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Xuanwu Hospital, Beijing, 100053, China
| | - Zhenxiang Zang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Xuanwu Hospital, Beijing, 100053, China.
| |
Collapse
|
3
|
Li L, Liu Y, Shu Y, Liu X, Song Y, Long T, Li K, Xie W, Zeng Y, Zeng L, Huang L, Liu Y, Deng Y, Li H, Peng D. Altered functional connectivity of cerebellar subregions in male patients with obstructive sleep apnea: A resting-state fMRI study. Neuroradiology 2024; 66:999-1012. [PMID: 38671339 DOI: 10.1007/s00234-024-03356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Previous studies have demonstrated impaired cerebellar function in patients with obstructive sleep apnea (OSA), which is associated with impaired cognition. However, the effects of OSA on resting-state functional connectivity (FC) in the cerebellum has not been determined. The purpose of this study was to investigate resting-state FC of the cerebellar subregions and its relevance to clinical symptoms in patients with OSA. METHODS Sixty-eight patients with OSA and seventy-two healthy controls (HCs) were included in the study. Eight subregions of the cerebellum were selected as regions of interest, and the FC values were calculated for each subregion with other voxels. A correlation analysis was performed to examine the relationship between clinical and cognitive data. RESULTS Patients with OSA showed higher FC in specific regions, including the right lobule VI with the right posterior middle temporal gyrus and right angular gyrus, the right Crus I with the bilateral precuneus/left superior parietal lobule, and the right Crus II with the precuneus/right posterior cingulate cortex. Furthermore, the oxygen depletion index was negatively correlated with aberrant FC between the right Crus II and the bilateral precuneus / right posterior cingulate cortex in OSA patients (p = 0.004). CONCLUSION The cerebellum is functionally lateralized and closely linked to the posterior default mode network. Higher FC is related to cognition, emotion, language, and sleep in OSA. Abnormal FC may offer new neuroimaging evidence and insights for a deeper comprehension of OSA-related alterations.
Collapse
Affiliation(s)
- Lifeng Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Department of Radiology, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, 410000, Hunan Province, China
| | - Yuting Liu
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, 410000, Hunan Province, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yucheng Song
- School of Computer Science and Engineering, Central South University, Changsha, 410000, Hunan Province, China
| | - Ting Long
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kunyao Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yaping Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Li Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ling Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yumeng Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yingke Deng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, Nanchang, 330006, Nanchang Province, China.
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, Nanchang, 330006, Nanchang Province, China.
| |
Collapse
|
4
|
Jin J, Su D, Zhang J, Lam JST, Zhou J, Feng T. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies. Chin Med J (Engl) 2024:00029330-990000000-01086. [PMID: 38809051 DOI: 10.1097/cm9.0000000000003167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Iron deposition plays a crucial role in the pathophysiology of Parkinson's disease (PD), yet the distribution pattern of iron deposition in the subcortical nuclei has been inconsistent across previous studies. We aimed to assess the difference patterns of iron deposition detected by quantitative iron-sensitive magnetic resonance imaging (MRI) between patients with PD and patients with atypical parkinsonian syndromes (APSs), and between patients with PD and healthy controls (HCs). METHODS A systematic literature search was conducted on PubMed, Embase, and Web of Science databases to identify studies investigating the iron content in PD patients using the iron-sensitive MRI techniques (R2* and quantitative susceptibility mapping [QSM]), up until May 1, 2023. The quality assessment of case-control and cohort studies was performed using the Newcastle-Ottawa Scale, whereas diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Standardized mean differences and summary estimates of sensitivity, specificity, and area under the curve (AUC) were calculated for iron content, using a random effects model. We also conducted the subgroup-analysis based on the MRI sequence and meta-regression. RESULTS Seventy-seven studies with 3192 PD, 209 multiple system atrophy (MSA), 174 progressive supranuclear palsy (PSP), and 2447 HCs were included. Elevated iron content in substantia nigra (SN) pars reticulata (P <0.001) and compacta (P <0.001), SN (P <0.001), red nucleus (RN, P <0.001), globus pallidus (P <0.001), putamen (PUT, P = 0.009), and thalamus (P = 0.046) were found in PD patients compared with HCs. PD patients showed lower iron content in PUT (P <0.001), RN (P = 0.003), SN (P = 0.017), and caudate nucleus (P = 0.027) than MSA patients, and lower iron content in RN (P = 0.001), PUT (P <0.001), globus pallidus (P = 0.004), SN (P = 0.015), and caudate nucleus (P = 0.001) than PSP patients. The highest diagnostic accuracy distinguishing PD from HCs was observed in SN (AUC: 0.85), and that distinguishing PD from MSA was found in PUT (AUC: 0.90). In addition, the best diagnostic performance was achieved in the RN for distinguishing PD from PSP (AUC: 0.84). CONCLUSION Quantitative iron-sensitive MRI could quantitatively detect the iron content of subcortical nuclei in PD and APSs, while it may be insufficient to accurately diagnose PD. Future studies are needed to explore the role of multimodal MRI in the diagnosis of PD. REGISTRISION PROSPERO; CRD42022344413.
Collapse
Affiliation(s)
- Jianing Jin
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Dongning Su
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Junjiao Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Joyce S T Lam
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA 02131, United States
- Harvard Medical School, Boston, MA 02210, United States
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
5
|
Yan S, Lu J, Li Y, Zhu H, Tian T, Qin Y, Zhu W. Large-scale functional network connectivity mediates the association between nigral neuromelanin hypopigmentation and motor impairment in Parkinson's disease. Brain Struct Funct 2024; 229:843-852. [PMID: 38347222 DOI: 10.1007/s00429-024-02761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 04/10/2024]
Abstract
Neuromelanin hypopigmentation within substantia nigra pars compacta (SNc) reflects the loss of pigmented neurons, which in turn contributes to the dysfunction of the nigrostriatal and striato-cortical pathways in Parkinson's disease (PD). Our study aims to investigate the relationships between SN degeneration manifested by neuromelanin reduction, functional connectivity (FC) among large-scale brain networks, and motor impairment in PD. This study included 68 idiopathic PD patients and 32 age-, sex- and education level-matched healthy controls who underwent neuromelanin-sensitive magnetic resonance imaging (MRI), functional MRI, and motor assessments. SN integrity was measured using the subregional contrast-to-noise ratio calculated from neuromelanin-sensitive MRI. Resting-state FC maps were obtained based on the independent component analysis. Subsequently, we performed partial correlation and mediation analyses in SN degeneration, network disruption, and motor impairment for PD patients. We found significantly decreased neuromelanin within SN and widely altered inter-network FCs, mainly involved in the basal ganglia (BG), sensorimotor and frontoparietal networks in PD. In addition, decreased neuromelanin content was negatively correlated with the dorsal sensorimotor network (dSMN)-medial visual network connection (P = 0.012) and dSMN-BG connection (P = 0.004). Importantly, the effect of SN neuromelanin hypopigmentation on motor symptom severity in PD is partially mediated by the increased connectivity strength between BG and dSMN (indirect effect = - 1.358, 95% CI: - 2.997, - 0.147). Our results advanced our understanding of the interactions between neuromelanin hypopigmentation in SN and altered FCs of functional networks in PD and suggested the potential of multimodal metrics for early diagnosis and monitoring the response to therapies.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, 107 North Second Road, Shihezi, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, JiefangAvenue, Wuhan, 430030, China.
| |
Collapse
|
6
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|